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Abstract— Because of the complex nature of soft robots,
formulating dynamic models that are simple, efficient, and
sufficiently accurate for simulation or control is a difficult
task. This paper introduces an algorithm based on a recursive
Newton-Euler (RNE) approach that enables an accurate and
tractable lumped parameter dynamic model. This model scales
linearly in computational complexity with the number of
discrete segments. We validate this model by comparing it to
actual hardware data from a three-joint continuum soft robot
(with six degrees of freedom represented in a constant curvature
kinematic model). The results show that this RNE-based model
can be computed faster than real-time. We also show that with
minimal system identification, a simulation performed using
the dynamic model matches the real robot data with a median
error of 3.15 degrees.

I. INTRODUCTION

Rigid-body equations of motion derived for rigid robots
are well defined because of rigid-body assumptions that lead
to simple lumped-parameter equations. Additionally, most
rigid-body robot joints are modeled as having only one
degree of freedom. These models are also relatively easy to
evaluate when formulated as second-order ordinary differen-
tial equations. Soft-body dynamics on the other hand require
understanding how the distribution of differential masses
affects the overall movement and rotational acceleration of
the body. To further complicate things, a continuum joint is
often represented using two to three kinematic degrees of
freedom. This leads to large and complex partial differential
equations that can be difficult or computationally expensive
to solve.

This paper presents a method of applying traditional rigid-
body techniques to continuum or “soft” segments. We apply
the derivation of the recursive Newton-Euler method for
rigid-body forward and inverse dynamics, found in [1], to
a robot with soft continuum joints that are pneumatically
actuated and have rigid links. This model is not intended to
replace more accurate and complex methods, but represents
a way to formulate the dynamics that results in an intuitive,
tractable, and sufficiently accurate method for simulation and
control of serial hybrid (soft plus rigid-body) robot chains.

We expect this paper to provide the following contributions
to the soft robot community:

1) extend the continuum joint modeling from [2] to a
serial chain of continuum joints and rigid links

2) derive a sufficiently accurate yet simple lumped param-
eter dynamic model that remains tractable for real-time
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Fig. 1. The pneumatically driven soft robot arm used in this paper.
Each orange segment is a continuum joint which is controlled by four
independently actuated pressure chambers. The joints are interconnected
with rigid aluminum links where the pneumatic valve assembly is mounted.
At the end of each joint is a black HTC Vive Tracker used for ground truth
joint angle estimation.

simulation
3) combine dynamic derivations and approaches from

rigid and soft-body disciplines into a single straight-
forward method and presentation

II. RELATED WORK

Modeling a robot (whether for control or simulation) has
two main components: kinematics and dynamics. A common
assumption used to derive the kinematics of soft robots is
to model the continuum joints as constant-curvature (CC)
segments [3], [4]. This assumption is usually valid in the
absence of large masses or external forces. There are many
parameterizations of the kinematic space in the literature.
Our paper uses the singularity free representation as defined
in [5] which is equivalent to the form described in [6]. Once
a valid parameterization to represent the position of the CC
segment is found the velocities and accelerations with respect
to each joint become a straightforward problem of taking
derivatives.

Because of the wide variation in soft robot designs,
the formulations for generating dynamic equations for soft
robots also varies widely. In [7], the authors claim that
the main concern while modeling soft robots is the trade-
off between computational expense, model complexity, and
accuracy. Several different methods have been introduced
that explore these trade-offs. Newton-Euler (see [8]–[14])
and Euler-Lagrange (see [2], [15]–[17]) methods are the most
traditionally implemented algorithms and depending on the
implementation can vary widely in their computational ex-



pense, complexity and accuracy. Because of the difficulty of
modeling every single aspect of a soft robot accurately (hys-
teresis, friction, nonlinear material properties, etc.), several
machine learning algorithms have also emerged to improve
modeling soft robot motion [18]–[20]. Another widely used
set of methods are finite-element methods which generally
trade-off computational expense and model complexity for
accuracy, although some researchers have proposed methods
to reduce the computational burden [21]–[24].

This conference paper is a natural extension of the mod-
eling work in [2] where the dynamic model of a single joint
was analytically derived with the Euler-Lagrange method.
This approach used the Sympy Python library (a symbolic
mathematical manipulation tool) to analytically solve for
the equations of motion and to then generate efficient code
in the C language [25]. Unfortunately, this approach to
generating entire equations of motion analytically became
intractable to generate on a standard desktop computer as
more continuum joints were added. This paper extends some
of the main modeling ideas of [2] to a recursive Newton-
Euler algorithm to efficiently compute the dynamics for a
full hybrid multi-body robot arm with three continuum joints
using six modeled kinematic degrees of freedom.

In this paper, we specifically use the recursive Newton-
Euler (RNE) method as first introduced for rigid-body robots
by [26]. The authors in [27] developed an RNE method for
rigid robots that had elasticity in their joints, but did not
include dynamics of continuum joints. In [28] they applied
continuum body dynamics to rigid hyper-redundant robots
and derived the momentum-balance equations that are the
core of the Newton-Euler algorithm. In [10] and [9] the
authors approximate a soft-body as a hyper-redundant rigid
robot and use RNE to solve for the dynamics. However
these methods require sufficient discretization to get accurate
results. Khalil et al. showed an RNE derivation for soft and
rigid-body systems, but the derivation includes the need to
do three recursions because they assume a floating base with
unknown acceleration [11], whereas our method only re-
quires the traditional two recursions. Renda et al. have shown
RNE methods combined with Cosserat/Kirchoff rod theory
to model soft robots such as in [12]. However the joints we
are modeling violate a primary assumption of Cosserat rods
in that they would not be classified as slender rods because
the joints have approximately the same diameter as length
(see Figure 1). This is a necessary feature of the type of soft
robots in which we are interested where the larger scale (in
terms of diameter of the joints) allows for higher payloads
and force output.

III. DYNAMIC FORMULATION

This section outlines the formulation of the dynamic
equations for a hybrid (soft plus rigid segments) robot arm.
First, the Jacobian and relevant kinematic parameters are
detailed. Second, we show the equations for the forward
pass of the recursive Newton-Euler algorithm. Third, we
derive the Newton-Euler equations for a soft-body joint or
rigid-body link that can be solved starting with the last link

and working back to the base. Lastly, a special feature of
the recursive Newton-Euler algorithm is that by running the
algorithm several times with different conditions the standard
form of (M , Cq̇, G) can be found. This form is desirable
because it can be used for direct dynamics as well as in many
control applications.

A. Kinematics

This derivation conforms to the frame convention de-
scribed in [1]. The frames are placed in between the rigid
and continuum segments such that the ith frame is placed at
the distal end of the ith segment as shown in Figure 2. The
authors, in [5], derive the kinematics for a single continuum
joint. In the paper, they define u and v as the rotation of the
distal end of the joint about the x and y axes respectively. In
this paper, we use the same notation. The following variables
which are defined in [5] are repeated here for clarity:

φ =
√
u2 + v2 σ = cos(φ)− 1

ũ =
u

φ
ṽ =

v

φ

(1)

Given some minor discrepancies in the equations from [5],
we explicitly redefine the relevant equations in this paper.
The 3x3 rotation matrix Ri−1

i , denoted as the rotation from
frame i−1 to frame i, for the continuum joints is calculated
through

Ri−1
i =

σṽ2 + 1 −σũṽ ṽSφ
−σũṽ σũ2 + 1 −ũSφ
−ṽSφ ũSφ Cφ

 (2)

where Sφ and Cφ are the sine and cosine functions of φ.
It should be noted that the forward pass implements Rii−1

which is the transpose of (2). The 3x1 vector from the base
of the joint to the center of rotation, ρ, is calculated as

ρ =
h

φ2

 v
−u
0

 (3)

where h is defined as the height or total length of the joint.
For vectors, we use the following notation: superscripts refer
to the frame that the vector is expressed in and the subscript
represents the measured quantity. Additionally, the position
vector from frame i−1, which is located at the center of the

Fig. 2. Diagram of a continuum joint i to show the frame placement and
position vectors from the base of the joint to the center of mass and distal
end of the joint.



base of joint i, to the distal end of the same joint, denoted
with a subscript e, expressed in the i−1 frame is defined as

ri−1
i−1�e,i =

−ρxσ−ρyσ
||ρ||Sφ

 (4)

where the notation ρx and ρy is defined as the x and y
components of ρ respectively. This vector is graphically
defined in Figure 2. The previous equations can be found
in [5].

Furthermore, the spatial Jacobian is defined as

Js =



0 σh/φ2

−σh/φ2 0
hũ(φ− Sφ)/φ2 hṽ(φ− Sφ)/φ2
(φu2 + Sφv

2)/φ3 ũṽ(φ− Sφ)/φ
ũṽ(φ− Sφ)/φ (φv2 + Sφu

2)/φ3

σṽ/φ −σũ/φ

 (5)

The derivation of which can be found in [5] or more
generally in [29]. The spatial Jacobian is used because it
can be calculated from simpler mathematical operations. For
our purposes, we get the more common geometric Jacobian
by using a shifting operation (sometimes called the adjoint
in robotics literature, see [29]):

J =

[
1 −

[
ri−1
i−1�e,i

]
x

0 1

]
Js (6)

where 1 and 0 represent a 3x3 identity and null matrix
respectively.

By the definition of the geometric Jacobian, for a con-
tinuum joint, i, the linear and angular velocity, νi−1

e,rel and
ωi−1
e,rel, as well as the linear and angular acceleration, ai−1

e,rel

and αi−1
e,rel, of the distal end of the link relative to and in the

base frame of the joint, i− 1, is calculated by[
νi−1
e,rel

ωi−1
e,rel

]
= Jq̇[

ai−1
e,rel

αi−1
e,rel

]
= Jq̈ + J̇ q̇

(7)

where q and q̇ are the vector of joint rotations and velocities
of joint, i, respectively. The Jacobian derivative is found via
the chain rule with

J̇ =
∂J

∂u
u̇+

∂J

∂v
v̇ (8)

The velocity and acceleration vectors of the center of mass
of the joint can be found by replacing the vector to the distal
end of the joint with the vector to the center of mass in both
the transformation matrix, g, and the Jacobian, J , as defined
in [29], and [5]. The position vector from frame i− 1 to the
center of mass, denoted as a subscript c, of link i relative to
frame i− 1, denoted as ri−1

i−1�c,i, is calculated as follows:

ri−1
i−1�c,i =

h

φ2

 (φ− Sφ) vφ
(φ− Sφ)−uφ
(1− Cφ)

 (9)

which is taken from [2] and shown graphically in Figure 2.
The relative velocity and acceleration of the distal point is

with respect to and described in the rotating frame at the base
of the link. This means that for a rigid link, i, the relative
velocity and acceleration vectors for both the distal end and
center of mass are set to a 3x1 zero vector such that[

νrel
ωrel

]
= 0

[
arel
αrel

]
= 0 (10)

B. Forward Recursion

The forward pass iteratively calculates the linear and an-
gular accelerations of the joint. The following five equations
are calculated for each joint or rigid link going from the
base link/joint up to the nth link/joint for an n-link/joint
serial robot. The recursion is started by setting the velocities
and accelerations at the base of the serial robot arm to a
previously known velocity and acceleration, usually zero.

For the ith link:

ωii = Rii−1ω
i−1
i−1 +Rii−1ω

i−1
i,rel (11)

αii = Rii−1α
i−1
i−1 +Rii−1a

i−1
i,rel + ωii ×Rii−1ω

i−1
i,rel (12)

νie,i = Rii−1(ν
i−1
e,i−1 + νi−1

e,rel + ωi−1
i−1 × r

i−1
i−1�e,i) (13)

aic,i =R
i
i−1(a

i−1
e,i−1 + ai−1

c,rel +
(
αi−1
i−1 × r

i−1
i−1�c,i

)
+
[
ωi−1
i−1 ×

(
ωi−1
i−1 × r

i−1
i−1�c,i

)]
+ 2ωi−1

i−1 × ν
i−1
c,rel)

(14)

aie,i =R
i
i−1(a

i−1
e,i−1 + ai−1

e,rel +
(
αi−1
i−1 × r

i−1
i−1�e,i

)
+
[
ωi−1
i−1 ×

(
ωi−1
i−1 × r

i−1
i−1�e,i

)]
+ 2ωi−1

i−1 × ν
i−1
e,rel)

(15)

where the variables are defined in section III-A. Equations
11-15 are taken from [30] for the velocity and acceleration
of a point in a rotating frame.

C. Backward Recursion

Once the accelerations at the center of mass of each
link are known, the forces and torques can be calculated
backwards recursively from the nth link down to the base of
the 1st link. The equations to find the forces and torques at
the beginning of the ith link are

f ii = Rii+1f
i+1
i+1 −miR

i
0g

0 +mia
i
c,i (16)

τ ii = Rii+1τ
i+1
i+1 − f

i
i ×

(
Rii−1r

i−1
i−1�c,i

)
+Rii+1f

i+1
i+1 ×

[
Rii−1

(
ri−1
i−1�c,i − r

i−1
i−1�e,i

)]
+ Ḣ

(17)

where f , τ , and g are 3x1 Cartesian force, torque, and
gravitational acceleration vectors. mi is the mass of the ith

segment and Ḣ is the time derivative of angular momentum.
Equivalent equations can be found in [30] or [1] and are
based on Newton-Euler methods. It should be noted that
there is an important assumption in these equations. These
equations govern the average motion of a system or body
of particles [30]. More accurate results could be found
by including the interaction forces between all particles in
the joint however this would significantly complicate the



model. We assume that the average motion of the particles
enables sufficiently accurate simulation. We propose that
rapid evaluation of these equations makes this a justifiable
assumption.

For the calculation of Ḣ , we assume that at each time step
the continuum joint can be approximated as a rigid link. This
is calculated simply as

Ḣ = Iii,cα
i
i + ωii ×

(
Iii,cω

i
i

)
(18)

which can be found in [30]. The 3x3 inertia tensor of the
ith link about the center of mass and in the ith frame, Iii,c,
is updated at each time step and is defined as

Iii,c =

∫ h

0

(Rii−1R
i−1
diskI

disk
disk,cR

i−1
disk

TRii−1
T

−µ
[
rii,c�disk,c

]
x

[
rii,c�disk,c

]
x
) dl

(19)

which uses the infinitely thin disk assumption and uniform
linear density, µ = m/h, as in [2], with the parallel axis
theorem to move the moments of inertia of each disk to
the center of the joint. Additionally, [ ]x represents the skew
symmetric operator which forms a skew symmetric matrix
from a 3x1 vector. The integration is performed from zero
to h over l which is defined as the length along the central
arc of the joint. The inertia tensor of an infinitely thin disk
about the center of mass of the disk, Idiskdisk,c, is defined in
[2] as

Idiskdisk,c =

 1
4 0 0
0 1

4 0
0 0 1

2

µ(D/2)2 (20)

where D is the diameter of the disk. The vector of positions
from the center of the joint to the center of each disk,
rii,c�disk, is calculated by

rii,c�disk = Rii−1

(
ri−1
i−1�disk,c − r

i−1
i−1�i,c

)
(21)

and the position vector from the base of the joint to the center
of mass of each disk , ri−1

i−1�disk,c, is defined as

ri−1
i−1�disk,c =

−ρxσl−ρyσl
||ρ||Sφl

 (22)

where φl is defined in [2] as l/||ρ|| and σl is defined the
same as σ in (1) except with φl instead of φ. In practice, the
algorithm is written in C code for rapid execution, however
(6), (8), and (19) are computed symbolically in Sympy and
then written to C code [25].

D. Lagrangian Form

The inverse dynamic problem, useful in feed-forward
control applications, of getting input torques given joint
angles, velocities, and accelerations is as simple as doing one
pass forward and backward. In order to do direct dynamics,
for simulation, and for some model-based control methods
we would like to get the equations of motion in a form like
the following:

q̈ =M−1(−Cq̇ −G+Kprsp−Kspringq −Kdq̇) (23)

where q is a vector of the joint angles (or generalized
coordinates) and q̇ and q̈ are its time derivatives. Following
the convention in [31], M is the mass or inertial matrix,
C is the Coriolis matrix, G is the vector of torques due to
gravitational loads and all of these arrays can be calculated
via the recursive Newton-Euler algorithm explained above.
As defined in [2], Kprs, Kspring , and Kd are matrices de-
scribing the torque-to-pressure mapping, the parasitic spring
coefficients, and the damping parameters of a soft-body
joint respectively. These matrices are a function of the
construction of the soft robot and are found via system
identification.
M , Cq̇, and G can be calculated by setting different initial

conditions and running the recursive Newton-Euler algorithm
multiple times. To calculate:

• G, we set q̇ = q̈ = 0.
• Cq̇, we set q̈ = g = 0.
• for the ith column of M , we set q̈i = 1, all other q̈−i =

0, and q̇ = g = 0.
The resulting torques at each of the defined frames cal-

culated by the recursive Newton-Euler algorithm with the
conditions specified above correspond to the n × 1 vectors
of G, Cq̇, and the ith column of M where n refers to the
number of torque inputs.

IV. EXPERIMENTAL SETUP

A. Hardware Description

We validate our dynamic model formulation using data
from the hybrid continuum robotic arm shown in Figure
1. The robot is composed of three pneumatically-actuated
continuum joints connected serially by rigid links. Each joint
uses four blow-molded pressure chambers which surround
an inextensible steel cable as is shown in Figure 3. Pressure
differentials between opposing chambers create a net torque
which bends the joint about its x and y axes (as described
in Figure 3) with constant curvature.

Fig. 3. Diagram of pneumatic joint and blow-molded pressure chambers.
This joint is shown sliced along the y-z plane, where z points upwards, y
points to the right, and x points out of the page.



Figure 3 shows the pressure-to-torque mapping for a single
joint of the three continuum joint soft robot. The straight blue
arrows represent the forces being applied by the pressure
chambers and the curved red arrow represents the equivalent
torque about the x axis. Because the equivalent forces would
be acting along the inextensible steel cable these forces are
neglected. Applying this derivation to calculate the torque
about the y axis and putting the result in matrix form gives
the following equations for the torque of a single joint:

τ =

[
τx
τy

]
=

[
dA −dA 0 0
0 0 dA −dA

]
p0
p1
p2
p3

 = Kprsp

(24)
where the meaning of the variables is shown in Figure 3. d is
the distance from the center of the joint to the center of the
pressure chamber, and p is the pressure inside the pressure
chamber. A is the cross-sectional area of a single pressure
chamber where A = πδ2 and δ is the radius of the pressure
chamber.

B. Data Collection

We collected data on the pneumatic robot arm shown
in Figure 1 by sending 5 randomized 2 second pressure
step commands between 0 and 150 KPa. A representative
input trajectory can be seen in the top graph in Figure 4,
which shows the actual pressures for joint 1. HTC Vive
Trackers, as seen in Figure 1, provide the resulting rotation
matrix from the base to the distal end of each continuum
joint. The elements of this matrix are used to solve for the
joint angles, u and v using equation 2. We refer to this
dataset as the training dataset. We then used Optuna [32],
a parameter optimization software package, to estimate joint
spring (Kspring) and damping coefficients (Kd) as seen in
(23).

Fig. 4. Graphs of the pressure trajectory for the first joint. Top graph shows
the step trajectory which is used to get the training dataset. Bottom graph
shows the smoothed input trajectory for the test dataset. Joint 2 and 3, not
shown, have similar trajectories.

In order to test the ability of the presented modeling
approach to generalize beyond step commands, we simulated
the model using a set of test data (i.e. data which was
not used for system identification). This data consisted of

Fig. 5. Graph of the joint angles of the three pneumatically actuated joints
with six kinematic degrees of freedom in our model. The predicted joint
angles from the simulation are plotted in solid lines and the results from the
hardware training data are plotted as dotted lines. The hardware results were
used to optimize the joint stiffness (Kspring) and damping (Kd) matrices.

TABLE I
ERROR STATISTICS BETWEEN SIMULATION AND HARDWARE ON

TRAINING DATA

Joint Angles Mean (rad) Median (rad) Max (rad)

u1 0.035 0.035 0.102
v1 0.041 0.036 0.106
u2 0.043 0.040 0.127
v2 0.036 0.025 0.137
u3 0.047 0.044 0.120
v3 0.019 0.012 0.071

Total 0.037 0.031 0.137

smooth pressure trajectories over random areas of the robot’s
workspace.

V. RESULTS

The previously outlined algorithm in section III was writ-
ten and compiled in the C/C++ language to form the equa-
tions of motion and wrapped in python code in order to per-
form numerical integration using the scipy.integrate.solve ivp
function [33] with the BDF method [34]. The simulation uses
multiple cores on an AMD Ryzen 9 5900 12-Core Processor.
The actual pressure trajectories from the training and the test
datasets were applied to the simulation. Starting with the
training dataset, Figure 5 shows the simulation joint angle
trajectories (solid lines) over time, u (bending about the x-
axis) in red and v (bending about the y-axis) in blue, plotted
against the hardware training data shown with dotted lines.
This dataset was used for optimizing joint spring (Kspring)
and damping coefficients (Kd) as mentioned in Section IV-B.
Table I shows the mean, median and maximum absolute error
between the simulation and the hardware for the training
dataset. As shown in Table I, the total error between the
simulation and the hardware has a median of 0.031 radians or
approximately 1.8 degrees. The simulation runnning on the



Fig. 6. Graph of the joint angles from the three actuated joints. The
predicted joint angles from the simulation are plotted in solid lines and the
results from the hardware data are plotted as dotted lines. As can be seen
in the graph, the simulation matches the trends of the physical hardware.
The simulation’s constant stiffness and damping matrix have been optimized
using data from Figure 5. However it should be noted that Figure 5 has a
much smaller overall displacement than the above graph.

TABLE II
ERROR STATISTICS BETWEEN ENTIRE SIMULATED JOINT TRAJECTORY

AND ACTUAL JOINT TRAJECTORY ON TEST DATA.

Joint Angles Mean (rad) Median (rad) Max (rad)

u1 0.207 0.121 0.587
v1 0.165 0.131 0.425
u2 0.181 0.105 0.663
v2 0.166 0.107 0.451
u3 0.033 0.026 0.114
v3 0.012 0.012 0.041

Total 0.127 0.055 0.663

training dataset had a mean completion time of 9.77 seconds
or 74.6 percent of real-time with a sample of 30 runs.

For the test dataset, Figure 6 shows the results of the
simulation versus the hardware. Table II shows the average,
median and maximum absolute error between the simulation
and the physical robot arm for the test dataset. The total
median absolute error was 0.055 radians or 3.15 degrees. The
simulation had a mean completion time of 12.02 seconds or
85.2 percent of real-time with a sample of 30 runs.

VI. DISCUSSION AND CONCLUSION

Figures 5 and 6 indicate that the dynamic model presented
in this paper captures overall trends reasonably well. This is
supported by the statistics reported in Tables I and II where
the worst case median absolute error for any single joint
angle across all six joint angles for the test data was 0.131
radians (approximately 7.5 degrees on joint angle v1).

On the other hand, it is clear that the model does not
capture some higher order dynamic modes of the system
and occasionally struggles to reach the correct steady-state
values. This is most clearly seen in the Joint 1 and Joint 2
subplots in Figures 5 and 6 where the maximum absolute

errors are significantly higher.
We hypothesize that this error is likely due to unmodeled

dynamics in the terms most related to our actuator model.
These terms include Kprs, Kspring , and Kd which are a
part of (23). These three terms are not part of the recursive
algorithm presented in this paper but are instead linear
approximations of actuator dynamics that we expect could
more accurately be represented with nonlinear or higher-
order terms (including phenomenon like pressures waves in
the large pneumatic chambers).

The effects of these terms are most noticeable in the
dynamic response of Joint 1 and Joint 2. We hypothesize
that the linear pressure-to-torque mapping term Kprsp is
actually a function of q and possibly q̇ as well. That is, the
joint dynamics are coupled with the pressure dynamics. To
explain this dynamic coupling, consider a pressure chamber
which compresses as q changes. This compresses the air
inside of it briefly before the valves are able to vent the
extra pressure. But as the arm continues to oscillate, the
same chamber that was compressed stretches out causing
a drop in pressure. The valves would subsequently open to
maintain the commanded pressure, potentially causing the
small oscillation in joint angle that is evident in the data. In
addition, from prior data we expect that the linear spring and
viscous damping terms (Kspringq and Kdq̇) are nonlinear–
especially near joint limits as pressure chambers reach their
maximum or minimum deformations.

This explanation is supported by the fact that in both input
trajectory cases, the maximum absolute error for Joint 3 is
less than 0.07 radians (or 4 degrees), showing that our pro-
posed model captures the dynamics well. Joint 3 is the most
distal joint on the arm, where we expect the proposed joint-
pressure dynamic coupling to be least influential because this
joint carries the least mass. This also means that the joint
is less likely to reach joint limits where the nonlinearity in
stiffness and damping are most pronounced. Because these
actuator dynamics are not the main contribution of this paper,
we leave their modeling and identification for future work.

In conclusion, in this paper, we have presented a recursive
dynamic soft robot model that is tractable with faster than
real-time execution. In addition, the model accurately rep-
resents the effect of distributed mass (e.g. rotational inertia)
on large-scale soft continuum joints with rigid links. Minor
errors (in terms of amplitude) in the model deserve additional
attention in future work. However, the current results show
that this model is scalable to complex soft robot manipulators
and may be used in future applications for both simulation
and model-based control given the level of accuracy that we
have already demonstrated.
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