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1 Problem Statement

The term ‘manipulation’ refers to an agent’s control of its environment through selective
contact [I]. Humans and animals are expert open-world manipulators. The term ‘open-
world’ refers to the idea that the world is inherently unstructured and objects inside of it
have infinite variability [2]. Humans are capable of manipulating a wide range of objects
varying in size, shape, texture, stiffness, and mass in unstructured environments — often
without knowing anything about the object beforehand. While many manipulation tasks
can be completed using only hands, many tasks require the use of additional body parts,
such as the arms, chest, legs, back, or shoulders. These situations arise when the object is
particularly large, heavy, or awkward. For example, a delivery person can move boxes of all
shapes and sizes from a truck to a house; a firefighter can lift and carry someone to safety;
a nurse can help someone out of bed. These are also cases where a robotic assistant could
be beneficial for the safety and well-being of the human, whatever their role in the task.

Unfortunately, many state-of-the-art robotic manipulators are practically useless in these
situations, as they are tailored towards the exclusive use of end effectors to accomplish a
task. Entire books have been written with this end-effector-only perspective. But what
if a robot is tasked with carrying a disaster victim to safety or delivering a large box?
What should the robot grasp with its end-effector? In some instances customized hardware
solutions are available (like suction grippers used in the logistics industry to lift heavy boxes).
While effective, developing customized hardware solutions for every use case is prohibitively
expensive for a general-purpose assistive robot.

Tasks such as these require a less restrictive approach to manipulation. What if the robot
could use any part of its structure or the environment to perform a manipulation task, instead
of using only well-defined contact locations? Suddenly a considerable quantity of contact-
rich manipulation behaviors like enveloping, bracing, squeezing, sliding, or supporting can
be exploited in control and planning algorithms. Manipulation of this kind is referred to as
whole-arm, whole-body, or whole-world manipulation.

The concept of whole-arm manipulation was originally proposed in the 1980s by Salisbury
[3] with the WAM arm along with basic kinematic and dynamic requirements for making
and maintaining contact with manipulated objects. Since then, the majority of the research
in whole-arm manipulation has relied on carefully tuned, task-specific impedance control
or force control, neither of which offer robustness for handling open-world scenarios. Often
accompanying these controllers is an underlying assumption of one or two contact points
in specific locations. Additionally, the manipulation is generally assumed to be quasi-static
and objects are assumed to have known inertial properties and states that are both certain
and fully-observable. These assumptions are unrealistic for open-world manipulation.

Meanwhile, recent innovations in the field of soft robotics suggest that purposefully in-
corporating passive compliance into the manipulator can dramatically simplify the control
problem while operating around people or in unstructured environments. Passive compliance
makes a robot inherently safe and robust in these open-world situations. Rigid robots require
sophisticated control and expensive sensors to accomplish the same level of robustness and
safety. Using passive compliance can mitigate the risk of contact rich tasks and can also help
simplify the problem.

For my thesis I propose to develop control and planning algorithms for autonomous whole-



Figure 1: Rendering of preliminary robot torso design. This will be used for hardware testing of
whole-arm manipulation tasks in this thesis. For scale, the entire structure is about 1.8
meters tall.

body manipulation of objects that cannot be grasped with an end effector. The proposed
algorithms will use only onboard sensory feedback (i.e. tactile, pressure, orientation, and
visual feedback) to 1) learn inertial and geometric properties of unknown objects and 2)
manipulate the object. This sensory constraint reflects the fact that instrumenting every
object to be manipulated with various sensors is impractical in open-world manipulation.
The algorithms will be tested in a simulation environment, as well as on hardware using
a two-armed soft robot torso outfitted with tactile sensors, currently in development (see
Figure [I]). This hardware platform enables us to also explore the use of passive mechanical
compliance and its role in whole-body manipulation.

2 Background

2.1 Challenges of Whole-Body Manipulation

Several textbooks have been written on robotic manipulation ([4], [5], [6], [7], [8]), but
in general these resources, along with current research, are narrowly focused on gripper-
only manipulation. My work will focus specifically on whole-body manipulation, a type of
manipulation that is not well-studied in the literature—especially in regards to soft robots—
but which has a huge potential value to the field. This section is organized according to
the main challenges presented in [I], that make robotic manipulation difficult: mechanisms,
perception, modeling and control with contact, and planning.



2.1.1 Mechanisms

The challenge of mechanism design lies inherently in the tension between multiple desirable
attributes of a general-purpose manipulator: safe in unstructured environments, reasonably
strong and fast, and relatively inexpensive. Successful manipulation requires that all three
of these requirements be reasonably met.

There are two different directions of research attempting to satisfy all three requirements.
The first is outfitting normal rigid robots with soft materials. The authors of [3] first recom-
mended covering the rigid structure with high-friction, soft materials. The authors of [9] use
a similar approach with pressurized foam pads on the chest and arms of a rigid robot torso
for whole-arm bimanual grasping. Many researchers simply add soft pads at the expected
contact locations, for example in the bimanual manipulation of a box [10] or assistance of a
hospital patient [11].

Another approach is to soften the body of the manipulator itself. This can be done by
adding compliance into the joints of an otherwise rigid robot, as is done with series elastic
actuators. The field of soft/continuum robotics goes even further and reduces or removes
typical rigid linkages throughout the entire robot. Many such designs inspired by octopus
tentacles, muscles, or elephant trunks have been proposed for whole-arm manipulation [12],
[13]. There is also a related body of research in the field of robotic hand design [14], [15]
which borrows some of the same ideas for manipulating small objects (e.g. gecko-like grippers
[16]).

It is clear that the research community is converging on the idea of mechanical intelligence
[17] where mechanism design can help simplify the contact-rich manipulation problem instead
of relying on overly-cautious, avoid-contact-at-all-costs planning and control algorithms.

2.1.2 Perception

The role of perception is often minimized in robotic manipulation research by assuming
perfect knowledge of the object and the environment. This assumption necessitates the
use of high-accuracy systems such as motion capture and robot-facing cameras to avoid
occlusions. But these sensors are not practical for use in the real world, and the control
algorithms developed with them are also overly reliant on that type or quality of sensory
information. In order for a robotic system to be successful in open-world manipulation of
an unknown object, the perception subsystem must be physically plausible and needs to
provide both global and local information about the manipulation task at a sufficiently high
rate and resolution to be useful. But the local information cannot be isolated to a few known
points, since contact can occur anywhere along the structure of the robot during whole-arm
manipulation. The authors of [I§] provide a useful framework with which we can categorize
these pieces of information, namely: contact-level, object-level, and action-level information.
Contact-level information encompasses any local information at a particular contact site
(e.g. texture, or forces). Object-level information includes information inherent to the entire
object and is not restricted to a certain location (e.g. shape or inertial properties). Action-
level information is used for control and planning sequences of actions (e.g. object pose).
Contact-level and action-level information are summarized in this section. Section 2.2 will
provide an in-depth discussion of object-level information.



Onboard vision systems can provide reliable action-level information, and are often used
very successfully in manipulation in the context of reinforcement learning ([19], [20]). But
these approaches suffer from problems like occlusions, and also cannot provide adequate
contact-level information that is important for large/heavy objects.

There are many localized tactile sensing solutions which provide contact-level information
for in-hand manipulation [21]. Force-torque sensors provide excellent contact-level informa-
tion ([22], [10]) but they are expensive and limited to single known contact points, making
them unsuitable for whole-arm manipulation tasks. There are vision and tactile combina-
tions (i.e. visuotactile sensors) [23], but again, these are small-scale vision-based tactile
sensors. It is not clear how to scale these technologies for whole-arm manipulation.

Incorporating vision and distributed tactile sensing individually (as opposed to the vi-
suotactile sensors discussed above, where both methods are embedded into a single device)
could allow scaling up to the required physical area needed for whole-body manipulation.
Distributed tactile sensing is an active area of research with innovative designs in devel-
opment ([18], [24], [25]), but the sensory feedback from these designs has not been used
meaningfully in control or autonomous manipulation. Additionally, methods to effectively
fuse distributed tactile signals with vision have not been investigated (i.e. sensor fusion).

2.1.3 Modeling and Control with Contact

Dynamic simulation in robotics is an extremely useful tool. It provides a means to generate
massive amounts of training data for machine learning, allows the use of more sophisticated
control algorithms, and accelerates the testing and verification of new algorithms in a safe
manner [26]. Desirable features in a simulation environment include simulation speed, paral-
lelizability, physical accuracy, differentiability (for optimization), and realistic rendering (for
pixel-space learning), to name a few. There are many high-quality simulators for robotics
available, which offer various levels of these features ([27], [28]). One of the most difficult
challenges which affect all simulators is the so called ‘sim2real’” gap, where simulations fail to
capture real-world physical phenomena or introduce non-physical artifacts [29]. The sim2real
gap is perhaps largest in the context of contact mechanics, which are crucial in whole-arm
manipulation. A wide variety of contact models are used in robot simulation ([30], [31]) and
it is still unclear which models most accurately capture real-world contact dynamics, despite
several published comparison studies ([32], [33]).

Early work on control for whole-arm manipulation [34] explores the idea of line stiffness
control which enables the entire link of the robot to search for objects through collision and
push them across a table. The authors of [35] and [36] established the basic kinematic and
force-based control requirements to make and maintain contact.

Later, the author of [37] developed the ‘Octograsp’ algorithm for generating whole-arm
grasps using motors and joint torque sensors. The algorithm essentially moves the prox-
imal links inwards until contact is detected and continues down the arm until the object
is fully enveloped, while maintaining sufficient contact forces. This approach is similar to
the approach used in [9] though the method of detecting contact was through soft pressur-
ized sleeves instead of joint torque measurements. This enveloping algorithm simplifies the
whole-arm manipulation problem such that an explicit planner is not needed. While authors
demonstrate that this method generalizes to several different types of objects, it only allows



for planar grasps. It also relies on the assumption that the object is placed in the workspace
of the arm and in a pose which allows ‘hugging’. The algorithm does not treat re-grasping
either, which may be necessary when working in three dimensions, or when learning about
an object.

Instead, some force-based control methods explicitly reason about contact. The authors
of [38] used model predictive control (MPC) and impedance control with multiple contact
locations and were able to successfully regulate contact forces while moving through clutter.
While no prior model of the environment was assumed, it was assumed that the task was
quasi-static and planar. Later in [39], they extended MPC to a dynamic task with static
obstacles. This work illustrates the value of MPC and its ability to deal with constraints
explicitly. The authors of [40] instead address the manipulation problem with an object-
level impedance controller. They use the concept of virtual springs between three known
contact locations to perform a stable whole-arm grasp of a large ball. However, in whole-
arm manipulation assuming known contact locations beforehand is unrealistic. While these
locations could be measured using some sort of tactile sensing, it is not clear how this
method could scale to more uncertain contact locations. Additionally, the physical properties
of the object are also assumed to be known since the controller uses feedforward terms
to compensate for its dynamics. This makes the control method particularly sensitive to
modeling errors.

The authors of [41] present a nonlinear model predictive control (NMPC) method which
is solved using a generalized form of an iterative linear quadratic regulator (iLQR). They
successfully deploy the controller on quadruped robots trotting and jumping, and report
control rates of up to 190 Hz. The authors of [42] propose a formulation of MPC which
uses a mixed-integer quadratic program (MIQP) to handle contacts of a cart-pole system
colliding with soft walls as discrete optimization constraints. The authors of [10] use a slightly
different approach by using MPC in contact space (as opposed to joint space) to control the
deformation trajectory of the soft pads that they mounted to the robot end effector. All of
these methods demonstrate various ways to successfully incorporate a few known contacts
into an MPC-based scheme.

In summary, researchers often make one of two large assumptions to solve the manip-
ulation problem. One assumption is that knowing explicit information about the object is
unnecessary; the other is that information (e.g. geometric, inertia, etc.) about the ma-
nipulated object is entirely known. The first assumption limits manipulation capabilities to
semi-static grasping, while the second clearly cannot be the case for open-world manipulation
as it would require building a library of thousands of objects, all with different properties.
Additionally, it is unclear from these approaches how to formulate and/or scale the optimal
control problem when contact can be made at multiple locations.

2.1.4 Planning

Three major approaches to planning for whole-arm manipulation in the current literature
are learning, graph/tree search, and offline trajectory optimization in simulation.

The authors of [43] approach the problem as a continuous-state Markov Decision Process
(MDP) and use reinforcement learning to approximate a Q-value function and obtain an
optimal policy. The authors report learning and planning a successful planar whole-arm



manipulation policy in under two seconds. The major challenges reported by the authors
are that the MDP framework used 1) does not scale well to higher dimensions, which will
occur for three-dimensional manipulation; 2) is sensitive to uncertainty of the world state;
and 3) requires fairly accurate measurements of every object.

To address the need for accurate object measurements beforehand, the authors of [44]
instead explore learning how to grasp without seeing. In this work, they use a touch-based
object localization algorithm to generate an initial grasp which is improved upon as an au-
toencoder neural network learns to recognize the material. Though this gripper-only, planar
approach does not scale to three-dimensional whole-arm manipulation, the work demon-
strates the potential benefits of tactile exploration in whole-arm manipulation planning.

Authors of [45] present some dimensionality reduction techniques for model-free reinforce-
ment learning of bi-manual, three-dimensional, (gripper-only) manipulation in unstructured
environments. The techniques include the use of various types of joint-space movement
primitives to efficiently encode a trajectory with a limited set of parameters [46]. These
movement primitives can then be combined and adapted to obtain more complex motions.
A similar idea called ‘manipulation primitives’ exists for efficiently parameterizing trajec-
tories in contact space, as is done with tactile feedback in [47] and for robotic assembly
[48]. The use of primitives has not been explored in context of three-dimensional whole-arm
manipulation, with only a few planar proof-of-concept implementations, as in [9].

The use of manipulation primitives lends itself well to representing the manipulation
problem as a graph/tree search. The authors of [49] use rapidly exploring random trees
(RRTs) to kinematically plan whole-arm grasps of objects tumbling in space. This is done
in three dimensions by grasping in a ‘twining plane’, i.e. a curve that passes through the
center of mass of an object and is perpendicular to the object’s rotation axis. By planning
whole-arm grasps which lie in this plane, the arms can catch the object robustly. This
method relies heavily on known inertial parameters before manipulation occurs, but the
approach is one of the only works that consider three-dimensional whole-arm manipulation
(as opposed to strictly planar manipulation). The authors of [50] also plan three-dimensional
whole-body manipulation, but instead use graph searches of manipulation graphs. The
manipulation graph is built with nodes representing object poses, and transitions between
nodes representing manipulation primitives such as pushing, rotating, lifting, etc. When the
robot detects that the planned object motion does not occur, it searches for a new plan along
a different manipulation graph whose parameters match the real world more accurately. This
method successfully generates complex manipulation strategies that are robust and adaptive,
but relies heavily on having several manipulation graphs for each object and therefore does
not scale well to general manipulation.

The last of the three general approaches is offline trajectory optimization. These meth-
ods consider the problem of optimizing state, input, and contact trajectories simultaneously
over some future horizon, an idea now called ‘contact-implicit’ trajectory optimization. The
general approach is to use some simulation model to optimize a trajectory and then follow
the trajectory with PID control loops in hardware. There are various ways to actually per-
form the optimization depending on the formulation of the problem. The authors of [51] and
[52] both use an unconstrained iLQR algorithm. The authors of [53] formulate a nonlinear
optimization with complementarity constraints and use sequential quadratic programming
(SQP). Several other works have built on this idea to improve accuracy via orthogonal col-
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location [54], by using ideas from discrete variational mechanics [55], or by using different
contact models [52]. These new contact-implicit trajectory optimization methods are promis-
ing, especially for multiple contacts, but have largely only been tested in simulation. Very
few trajectory optimization techniques have been extended to real-time control for robustness
to uncertainty (e.g. by using model predictive control) or to whole-arm manipulation.

2.2 Challenges of Object Learning

Object learning is a central component of autonomous robotic manipulation. My work will
focus specifically on the manipulation of ‘unknown objects’, defined as objects which have
both geometric and physical properties that are uncertain [56]. As was briefly discussed in
Section vision is one of the most ubiquitous on-board sensors that can be used for ma-
nipulation, and has been used successfully. But cameras alone cannot provide information
on inertial properties—which are important for whole-arm manipulation—and cameras suffer
from other problems like occlusion, which will happen frequently during this type of manip-
ulation. As such, this thesis will explore the complementary properties of tactile sensing and
vision for whole-arm manipulation.

Depending on the type of manipulation, the robot may need only rough geometry esti-
mates to successfully manipulate the object (such as is often the case with finger-tip grasps,
where the weight of object is negligible compared to grasp forces). This assumption cannot
be made for whole-arm manipulation. Whole-arm manipulation is most useful for objects
that are heavy, awkward, or large. In these cases, it is important to know both geomet-
ric and inertial properties of the object. Many aforementioned papers on control/planning
for robotic manipulation simply assume that these properties are known beforehand. In
open world manipulation, this is not be the case. The algorithms developed in this thesis
will not make that assumption, and will therefore rely on simple onboard sensors to learn
the necessary information for whole-arm manipulation. This section will folow the outline
presented in [I8] which categorizes the different types of object-level information that are
commonly needed for robotic manipulation into three main categories: object localization,
object shape, and object mass and dynamics. In theory, a spectrum of object learning meth-
ods could exist between vision only and tactile feedback only. Yet the authors of [57] outline
many object learning methods that are either vision-based or exploratory (i.e. via tactile
feedback). Curiously, there is no mention of combining these two methods, leaving a clear
area for potential contributions.

2.2.1 Object Localization and Shape Estimation

Object localization and object shape estimation is almost exclusively done with vision via
RGBD sensors. Various algorithms exist for processing RGBD sensor data streams to ac-
complish object detection, tracking, and shape estimation (see Chapters 4-6 of [2]). Un-
fortunately, these algorithms suffer heavily from issues related to occlusion. To illustrate,
when using these algorithms it is not uncommon to find 8-10 cameras—both on and off the
robot—focused on a specific environment to avoid occlusion problems. This is clearly not
scalable to open-world manipulation.

The growth of deep learning has had a large impact on robotic perception, in this case



with the use of convolutional neural networks (CNNs). These networks use RGBD sensory
inputs to provide important imformation on object pose and shape [56]. For example, [5§]
uses a CNN originally presented in [59] called ShapeHD to perform ‘shape completion’. Vi-
sion feedback from a single camera provides a two dimensional representation of the object
which is often occluded. The ShapeHD CNN maps this to a three-dimensional point cloud,
with which the robot can reason about possible grasps. These methods help to solve the an-
ticipated occlusion problem for whole-arm manipulation, but still do not provide any inertial
parameters. In fact, because many of these algorithms were developed for in-hand manipu-
lation of relatively small and light objects, they often do not consider physical properties of
the object at all.

There is another branch of research working toward combining vision and tactile based
sensing for shape estimation [60], [61]. These sensors use a deformable gripper material
with an embedded camera to estimate deformation patterns as a grasp is executed. These
sensors can provide all of the feedback types that are required for whole-arm manipulation
(estimate object pose, geometry, and mass properties), but are limited to fingertip grasps as
the embedded camera’s field of view constrains the possible size of the deformable material.

2.2.2 Physical Parameters Estimation

While many manual methods exist for accurately estimating the inertial parameters of rigid
bodies (e.g. scales, bifilar pendulums, etc.), they have not been extended for autonomous
robotic manipulation. The simplest extension of these methods is to measure the resultant
wrench vector using a force/torque sensor on the end-effector of the robot. As previously
discussed in Section this cannot scale to whole-arm manipulation.

There are vision-based methods to estimate inertial parameters, but they rely heavily on
assumptions like uniform density which are generally not known beforehand. Some recent
work [57] leverages video clips of objects in simulation or real life to learn inertial properties
of the object in the video.

While it does require more hardware than vision, physical exploration of an object with
tactile sensing allows much more accurate estimation of inertial parameters without needing
large datasets and strong prior assumptions. The authors of [57] outline many tactile ex-
ploration methods such as tilting [62], pushing, lifting, or swinging [63] to estimate inertial
parameters of both small and large objects. A major disadvantage of these approaches is
that they require a time consuming process of optimizing touch sequences to get the required
data [1§].

One way around this is presented in [64], where estimation and motion planning happen
simultaneously for a humanoid robot manipulating a large box. Their algorithm recursively
estimates inertial parameters with Bayesian methods while planning the feasibility of ma-
nipulation primitives based on current likelihood of physical parameters. Thus, the robot
can start manipulating the object while learning about it, instead of waiting to know every-
thing. But this ability comes at a high computational cost. In response to this, the authors
note that the approach is limited in its ability to scale to real-world (and more specifically,
real-time) robotic manipulation.



2.3 Challenges of Manipulation with Large-Scale Soft Robots

The first main challenge preventing the use of soft robots in manipulation is the difficulty
of scaling up soft robots. State-of-the-art soft robot platforms capable of manipulation
are typically made from various types of silicone which are are quite dense—the density of
silicone rubber (1000-1500 kg/m?®) is more than the density of water. Robots made of these
materials are inherently limited in size, as larger designs would likely be unable to lift their
own weight. Some recent design innovations have lead to larger, meter-scale soft robots ([65],
[66]), which are capable of lifting large objects and walking. Very little has been done in
regards to soft robots manipulating objects, likely because the payload of most soft robots
scale poorly. The most promising designs for manipulation are the so-called continuum
manipulators inspired by nature’s masterful manipulators like the octopus or the elephant.
These types of robots constitute a middle ground between silicone-based soft robots and rigid
robots. They are comprised of soft segments interconnected with rigid components and are
driven pneumatically or with cables and motors. As such, these types of robots are typically
capable of higher payloads while still keeping the desirable trait of natural compliance, and
are good candidates for whole-arm manipulation of large objects. These useful properties
have already been exploited to estimate object shape by wrapping [67] and for planning
while in contact with the environments [68].

The second main challenge is the lack of accurate models and high-performance controllers
for soft robots. There are many different modeling approaches ranging in computation time
and complexity (Cosserat rods, FEM, rigid body approximations, machine learning, etc),
but the the underlying uncertainties of soft robots present a problem that has still not been
solved. Uncertainties can come from materials, manufacturing, wear over time, kinematics,
etc. Some have taken a data driven approach to either learn a model [69] or learn an
effective control law directly (e.g. via reinforcement learning [70]). These approaches have
demonstrated good results. But the time required to gather sufficient data is still large and
it is unclear what types of data lead to high-performing models. In any case, there is also the
problem that the process of gathering this data can wear out a soft robot. Exacerbating the
data collection problem, particularly in a manipulation context, is the fact that because of
the deformation inherent in soft robots, different loading conditions will cause the dynamics
to change. Gathering a sufficient amount of representative data to accurately model these
effects across all possible loading conditions is very challenging and expensive.

Instead of gathering data directly on hardware, using simulation tools to generate training
data is a promising alternative. However, the aptly named ‘sim2real gap’ (i.e. the differences
between a simulation and the real world) is still quite large for soft robots. Generating
physically accurate data in a computationally feasible way is an active area of research with
some promising results, but it is still not clear how to best close the gap.

Despite their challenges there are clear benefits of using simulation for data collection,
planning, and control. Because of the increased availability of affordable computation power,
simulations are becoming increasingly important in robotics. But common tasks required
of robotic manipulators involve complicated frictional contacts which are nonlinear, non-
smooth, and difficult to simulate quickly and accurately. Also important to note is that in
unstructured environments where soft robots are likely to be most effective, the number,
position, and magnitude of such contacts is also generally unknown (or at least uncertain).



Simulating soft robots in such environments generally has two main considerations: the
simulation of the robot itself and the simulation of contacts.

Until recently, the simulation of soft robots has generally been comprised of project-
specific simulation environments, but that limits speed of development and makes it harder
to benchmark algorithms. The problem is that the options commonly available for simulation
of soft robots are either FEM or rigid-body simulations. Some recent work has attempted
to solve this problem. The authors of [71] developed SoMo, which is a simulation framework
specifically for soft continuum robots built on top of Bullet, a rigid-body physics engine.
The authors of [72] use Drake [73], a rigid-body dynamics library, with an augmented rigid
body model [74] to simulate a soft continuum manipulator, but they could not simulate
the model in real time because a solution to a large set of nonlinear equations was required.
ChainQueen ([75],[76]) and SOFA [77] are two simulators built specifically for soft robots, but
ChainQueen does not support rigid-soft hybrid robots, which we hypothesize are important
for contact tasks and payload capabilities, and SOFA relies on FEM which is currently too
slow for real-time control.

3 Research Objectives

The goal of this research is to enable autonomous whole-body manipulation of large objects.
Success means that a soft robot will be able to learn about an unknown object in order
to move it into a desired configuration. To this end, the main objectives of the proposed
research are as follows:

e Develop dynamic models and evaluate a simulation framework of the proposed soft
robot torso with a particular focus on dynamics and contact with the environment.
This will be used for testing algorithms throughout the work.

e Explore the combined use of visual and tactile sensory feedback and develop algorithms
which use that feedback to learn geometric and inertial properties of large unknown
objects.

e Develop and evaluate algorithms that utilize learned knowledge about a large object
in order to manipulate it into a desired configuration.

These objectives will advance the state-of-the-art by significantly extending the manipu-
lation capabilities of robots as well as providing algorithms more directly applicable to the
real world, where objects cannot all be known and localized beforehand. These algorithms,
though specifically developed to take advantage of the unique properties of soft continuum
manipulators, will provide valuable insight for the robotics community in general. The
workspace of the the robot is effectively extended if it can use its whole arm, the payload is
increased because loads can be supported by the structure of the robot, and the amount of
objects that a robot can manipulate is much larger.
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Figure 2: Joint angle predictions from [69]. The hardware data is the raw data collected on the
robot. The analytical model derived in [78] clearly is not accurate. The Ngm + Nerr
line is the model after learning took place.

4 Proposed Research

The following sections expand on the specific technical approach I plan to follow to accom-
plish the research objectives in Section [3] Note that some of the work I will describe has
already been published. I will be using a soft robot torso (see Figure [1)) for hardware ex-
periments throughout this work. Each arm will be outfitted with fabric tactile sensor arrays
adapted from [25].

4.1 Dynamic Modeling and Simulation of Soft Robots

As has been discussed, soft continuum robots have some inherent advantages (i.e. ‘me-
chanical intelligence’) that can make contact-rich manipulation an easier problem. These
advantages do come at a cost; soft robots are difficult to model accurately. In addition,
state-of-the-art simulators for robotics generally do not support soft robots.

In my previously published work [69], we used deep learning to compensate for the
modeling errors that we knew existed in the dynamic model originally developed in [78].
The resulting model (with error compensation) more accurately predicted the states of the
real robot (see Figure [2)) and improved control performance.

While effective, this approach was difficult to scale to more degrees of freedom. In [79],
we solved this problem by using the Recursive-Newton-Euler (RNE) algorithm to simulate
the dynamics numerically instead of analytically. Each continuum joint is considered a chain
of thin disks, each of which has a mass and inertia. The RNE algorithm simply steps along
each disk and computes relative velocities, accelerations, and forces. This method worked
well, but was another instance of an ad-hoc soft robot simulation. It also would have required
custom implementation of contact and sensor models. No off-the-shelf simulator exists that
does both soft /rigid body simulation and contact quickly enough or accurately enough.
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My proposed approach builds on these ideas, but uses a well-supported rigid-body physics
simulator called MuJoCo (Multi-Joint Dynamics with Contact) [80]. MuJoCo uses RNE for
dynamic simulation, but also implements a state-of-the-art contact model along with many
other types of sensors. By treating each of the disks as a distinct rigid body interconnected
by universal joints with stiffness and damping, we can simulate the continuum nature of the
joints, as shown in Figure|3|for a single arm. MuJoCo, similar to many other robot simulator
frameworks, uses an XML-based modeling language. This means that the models created for
this proposed research will be portable, self-contained, and compatible with other research
to allow for easier comparison—a major improvement over the ad-hoc simulations currently
available for soft robots.

The idea of approximating a flexible body with smaller rigid bodies interconnected with
flexible links is not novel. It is very similar to the pseudo rigid-body model originally
introduced for compliant mechanisms in 1996 [81], and to what was recently implemented
for planar bending of soft robots in [71I]. My work will extend the idea to three dimensions
while building on top of well-supported, standard tools that are widely used in the robotics
community. The proposed simulator will also accelerate development of the algorithms
described in the following sections.

Figure 3: Screenshot of continuum soft robot simulation. This model contains only one arm, but
the final simulation will include two arms with straight links and a torso, as in Figure

U

4.2 Learning about Unknown Objects

My approach to accomplish autonomous learning about unknown objects will focus partic-
ularly on combining distributed tactile sensing with vision. Recall that an unknown object
is defined in this work as an object with uncertain geometric and physical properties.

The first objective to learning about an unknown object is to obtain an estimate of the
object’s geometry. I propose to build on [82], which uses a convolutional neural network to
perform shape completion (i.e. predict a volumetric mesh of an occluded object) using RGBD
sensory input. The authors have open-sourced their model and training data, making this a
good starting point. Because their work only considered hand-held objects, it is not clear how
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Figure 4: Different approaches to manipulation of an unknown object. The top row is the general
assumption that an object must be fully identified before manipulation can take place.
The bottom row is a different perspective, where manipulation and identification help
improve one another iteratively.

the pre-trained model will generalize to larger objects typical of whole-body manipulation.
Part of my work in this area will be to evaluate the performance of the pre-trained model
and fine-tune it with custom data for larger objects if necessary.

Once a preliminary geometric model is found, the remaining task is to learn about the
physical features important for whole-body manipulation. Because of the lack of literature
on whole-arm manipulation, it is not clear which physical parameters will be most useful.
The authors of [63] found that surface friction, object mass, center of mass, and the moments
of inertia are the most important for an object swing-up task. These same properties are
likely useful for whole-arm manipulation, so my work in this area will initially focus on
developing algorithms to estimate these values autonomously.

As was discussed in Section [2.2] estimating these parameters with vision sensors alone
requires strong assumptions, and estimating these properties with tactile sensors alone re-
quires an expensive process of optimizing and performing a sequence of exploratory actions.
The relatively unexplored area of combining these sensors will be a major focus of my work.
I propose a method which uses the strong assumptions generally used with vision sensors
(i.e. uniform density) as a prior, which will be iteratively refined using a limited sequence of
exploratory actions. While assumptions like uniform density are not valid in general, espe-
cially for large or awkward objects, it can still serve as a decent ‘warm start’ solution which
can dramatically increase the efficiency of any necessary exploratory actions that follow.

The exploratory actions can then be designed or learned from movement primitives such
as tilting, swinging, pushing, or hefting. For example, tilting an object in different directions
can provide information about the center of mass. Pushing an object can provide infor-
mation about coefficients of friction. Hefting, or similar dynamic movements, can provide
information about the inertial properties. This step of object learning is also a valuable
opportunity to explore and exploit the complementary relationship between object learning
and object manipulation. The general assumption in the literature is that the object to be
manipulated must be fully identified before manipulation can occur. This may not be the
case. In fact, control and planning during manipulation is likely necessary for object learning
and vice versa. Figure [4] illustrates the differences between these perspectives.
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4.3 Control and Planning for Whole-Arm Manipulation

Despite the best system identification efforts, the model and simulation framework proposed
in the previous section will never completely capture reality because of the complexity and
uncertainty of soft robots. As a result the controllers and planners used in manipulating an
object must be robust and adaptive.

MPC is a promising candidate for whole-arm manipulation because of its ability to ex-
plicitly include constraints, its inherent robustness to uncertainty, and its forward prediction
capability. In [78], we showed that MPC can be augmented with an adaptation law borrowed
from Model Reference Adaptive Control (MRAC). The adaptation law allows the controller
to improve in response to tracking error. This was demonstrated on a single 2-DOF' soft
robot joint and has yet to be scaled to more degrees of freedom. To accomplish robust and
adaptive joint-space tracking, I plan to extend this controller to the soft robot torso in Figure
which will have at least 13 degrees of freedom. An additional source of improvement can
come from the interaction between the object manipulation stage and object identification
stage, as shown in Figure [4]

The ability to explicitly include constraints will be valuable when reasoning about contact
modes. Because it is likely that contact-level constraints will cause optimization convergence
problems, I plan to incorporate the idea of ‘contact implicit’ trajectory optimization. This
was discussed in Section [2.1.4] where the idea was used in offline trajectory optimization for
quadrupedal locomotion.

I provide a basic overview of the theory behind contact-implicit optimization here. The
forward dynamics of a rigid-body undergoing inelastic contacts can be formulated as a Linear
Complementarity Problem (LCP):

find G, A
subject to H(q)§ + C(q,4) + G(q) = B(q)u+ J(g)" A

¢(q) >0 (1)
A>0

d(q)" A =0.

where ¢ € R" is a vector of generalized coordinates, H(-) € R™™ is the inertia matrix,
C(-,-) € R™ are the Coriolis terms, G(-) € R" is the gravitational forces, and B(-) € R"*™
is the input mapping of m inputs. ¢(q) > 0 represents a non-penetration constraint where
#(q) : R™ — R* for k potential contacts. A € R” is the vector of constraining normal forces,
mapped into generalized coordinates with the Jacobian J(q).

For contact-implicit optimization, the optimization problem is then defined as

N-1
minimize rN)+h The1, U 2
{h,:(:o,...,:cN,u1,...,uN,Al,...,)\N)gf ( N) ; g ( 1 k> ( )

where h is the length of the time steps for k =1... N —1, g¢(-) is the final cost function, and
g(-) is the integrated cost function. This optimization is subject to various constraints im-
posed by the manipulator dynamics as well as the contacts. A key idea is that by optimizing
over feasible states x, control inputs u, and contact forces A at each time step, the optimizer
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can reason about when and where contacts should optimally occur in a dynamically feasible
way. It is important to understand that a major assumption is built into this approach.
As presently formulated, the optimizer needs access to the state and dynamics of the entire
system, which in the case of this work, consists of the manipulator and the object. Recall
that in this work we are not assuming a perfect knowledge of the object beforehand. Instead
we rely on an iterative interaction between identification and manipulation to provide the
necessary information (Figure [4).

Therefore, I propose the use of contact implicit adaptive model predictive control (CIA-
MPC) for planning and control during contact-rich tasks. This controller, because of its
adaptive properties borrowed from MRAC, should be robust to the uncertain dynamics of
the soft robot arms and therefore be able to take advantage of the benefits of ‘mechanical
intelligence’.

Contact-implicit trajectory optimization has largely been offline, planar, and has assumed
a near-perfect knowledge of the world. Extending it to real-time control of uncertain objects
in 3D will allow the robot to simultaneously optimize contact sequences with joint trajectories
in a way that scales beneficially with respect to degrees of freedom and number of contacts,
without a need for a perfect knowledge of the world beforehand.

To aid in producing real-time capable control, I plan to extend the sampling and pa-
rameterization ideas introduced in [83] which enabled real-time MPC for high-DOF systems.
An in-depth study on the interactions between object identification and manipulation with
CIA-MPC, as well as an algorithm to accomplish this will also be a major contribution of
my proposed work.

5 Anticipated Contributions

Apart from my already-published contributions on the dynamic modeling of the soft robot
platform [69], [79] which will be used for this research, I anticipate technical contributions
in each of the three main objectives listed in Section [3] This research will advance the state-
of-the-art capabilities of robotic manipulation and will be communicated with the robotics
community via peer-reviewed conference and journal publications. The timeline of these
proposed contributions, as well as target publications, are indicated in Figure 5]

2020 | 2021 | 2022 | 2023 | 2024 | 2025
Start PhD Program —
Modeling Error Paper [69] [ — |
Qualifying Exams —
RNE Dynamic Model[79] : : %

Develop MuJoCo simulation [

®
Design torso with tactile sleeves | I )
Develop object learning algorithms [ |
1 —
Prepare and defend dissertation : . . 1 ' :}

TODAY

Develop manipulation algorithms

Figure 5: Timeline for accomplishment of proposed research and target conference publications
(red dots) and journal publications (blue squares).
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