
ORIGINAL RESEARCH
published: 04 May 2021

doi: 10.3389/frobt.2021.654398

Frontiers in Robotics and AI | www.frontiersin.org 1 May 2021 | Volume 8 | Article 654398

Edited by:

Egidio Falotico,

Sant’Anna School of Advanced

Studies, Italy

Reviewed by:

Benjamin Karg,

Technical University Dortmund,

Germany

Janine Matschek,

Otto von Guericke University

Magdeburg, Germany

*Correspondence:

Curtis C. Johnson

cjohns94@byu.edu

Specialty section:

This article was submitted to

Soft Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 16 January 2021

Accepted: 29 March 2021

Published: 04 May 2021

Citation:

Johnson CC, Quackenbush T,

Sorensen T, Wingate D and

Killpack MD (2021) Using First

Principles for Deep Learning and

Model-Based Control of Soft Robots.

Front. Robot. AI 8:654398.

doi: 10.3389/frobt.2021.654398

Using First Principles for Deep
Learning and Model-Based Control
of Soft Robots
Curtis C. Johnson 1*, Tyler Quackenbush 1, Taylor Sorensen 2, David Wingate 2 and

Marc D. Killpack 1

1 Robotics and Dynamics Lab, Department of Mechanical Engineering, Brigham Young University, Provo, UT, United States,
2 Perception, Control, and Cognition Lab, Department of Computer Science, Brigham Young University, Provo, UT,

United States

Model-based optimal control of soft robots may enable compliant, underdamped

platforms to operate in a repeatable fashion and effectively accomplish tasks that

are otherwise impossible for soft robots. Unfortunately, developing accurate analytical

dynamic models for soft robots is time-consuming, difficult, and error-prone. Deep

learning presents an alternative modeling approach that only requires a time history

of system inputs and system states, which can be easily measured or estimated.

However, fully relying on empirical or learned models involves collecting large amounts of

representative data from a soft robot in order to model the complex state space–a task

which may not be feasible in many situations. Furthermore, the exclusive use of empirical

models for model-based control can be dangerous if the model does not generalize well.

To address these challenges, we propose a hybrid modeling approach that combines

machine learning methods with an existing first-principles model in order to improve

overall performance for a sampling-based non-linear model predictive controller. We

validate this approach on a soft robot platform and demonstrate that performance

improves by 52% on average when employing the combined model.

Keywords: deep learning, model predictive control, soft robots, error modeling, data-driven modeling, dynamics

1. INTRODUCTION

Soft robots have many desirable characteristics which make them attractive candidates for a
wide variety of tasks where traditional rigid robots are ill-suited. For example, rigid robots are
often restricted to operating in well-defined enclosures to avoid dangerous collisions with the
environment or human operators. In contrast, soft robots are able to operate safely in unstructured
environments, where incidental contact is likely or even desired, due to their inherent flexibility
and adaptability.

In this work, the main contribution we present is a methodology for learning model
discrepancies for use in a real-time non-linear model predictive control (NMPC) scheme. We
validate this approach in simulation and on a soft robot platform. This platform is an ideal test bed
for our approach because the actual dynamics (both in terms of joint configuration and air pressure
in the joint chambers over time) are intrinsically more uncertain than previously presented rigid
robot systems and control methods discussed in section 1.1. While we apply our approach to soft
robotics to demonstrate its potential to learn both uncertain and unknown dynamics, the proposed
method could generalize to any platform using a model predictive controller.

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2021.654398
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2021.654398&domain=pdf&date_stamp=2021-05-04
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cjohns94@byu.edu
https://doi.org/10.3389/frobt.2021.654398
https://www.frontiersin.org/articles/10.3389/frobt.2021.654398/full

Johnson et al. Deep Learning and Model-Based Control

The structure of this paper is as follows. Section 2
presents our hardware platform, the analytical model used to
generate training data, our deep neural network (DNN) training
methods, and evaluation of each model’s accuracy. Section 3
explains the non-linear evolutionary model predictive control
(NEMPC) algorithm we employ and shows the results of our
experiments and explores their implications. Section 4 discusses
the importance of this work as well as current limitations and
future directions for additional research.

1.1. Related Work
The many desirable characteristics of soft robots present
challenging problems when it comes to modeling and controlling
them. Accurate physics-based (first-principles) models that are
tractable for real-time model-based control are difficult to obtain
because of uncertain material properties, hysteresis, non-linear
dynamics, and complicated pneumatic flow dynamics. Soft robot
physics-based modeling efforts range from finite element (FEM)
approaches as in Pozzi et al. (2018) and Katzschmann et al.
(2019) to Cosserat Rod models as in Till et al. (2019) or piecewise
constant curvature (PCC) models as in Allen et al. (2020) and
Della Santina et al. (2020). Many of these methods have shown
promise. However, the effort and expertise required to accurately
model all of the aforementioned effects is formidable. Even if
a perfectly accurate analytical model could be derived, it may
be useless for real-time model-based control due to the high
computational time required for evaluation, as will be shown in
the experiments of section 3.5. Additionally, even if the model is
made tractable using appropriate simplifications, it would likely
still require significant effort in system identification to obtain
acceptable closed loop control performance.

Rus and Tolley (2015) and Thuruthel et al. (2018) both
summarize the wide spectrum of strategies that have been
proposed to overcome the aforementioned modeling challenges.
Among these, data-driven modeling specifically addresses many
difficulties of physics-based modeling for control. Generally,
data-driven control algorithms are based on various forms of
machine learning, such as neural networks as in Thuruthel
et al. (2017) and Mohajerin et al. (2018), Gaussian processes
(GP) in Ostafew et al. (2016), Kabzan et al. (2019), Soloperto
et al. (2018), and Hewing et al. (2020), reinforcement learning
(RL) as in Thuruthel et al. (2019), or sparse optimization (also
known as SINDY) as in Kaiser et al. (2018). Notably, deep
learning has proven to be a valuable tool for robot modeling and
control and is explored thoroughly in Pierson and Gashler (2017)
and Sünderhauf et al. (2018). Deep learning has more recently
demonstrated the ability to approximate soft robot dynamic
models accurately in Gillespie et al. (2018) andHyatt andKillpack
(2020). A major benefit of such approaches is that they are largely
data-driven and as such, do not require an analytical model or
specialized expertise. However, using these learned models in a
real-time, model-based control formulation for soft robots (such
as in Gillespie et al., 2018; Hyatt and Killpack, 2020) has been
explored to a much lesser extent. Specifically, by using specialized
hardware for accelerated computing, such as Graphics Processing
Units (GPUs), data-driven models can be forward sampled in
large batches and at high rates using a parallelized architecture.

This enables their direct use to solve an optimal control problem
using a non-linear model predictive control strategy (see Hyatt
and Killpack, 2017; Hyatt et al., 2020b). This is the approach on
which we build for this paper.

On the other hand, an undesirable characteristic of data-
driven modeling techniques is the need for large amounts of
representative data, which is difficult to collect on hardware
platforms where exploring the whole state space of the robot
is infeasible or dangerous. Our approach in this paper is to
use a simplified, first-principles model to train a deep neural
network (DNN) to represent general trends in state variables
for the dynamics, and then add another deep neural network
to compensate for additional error in the predicted states.
To accomplish this, while also benefiting from the parallel
computation available on a GPU, we first train a DNN to learn the
first-principles model. Then we train a second DNN to learn the
simulation-to-reality error gap. Because the first-principles DNN
learns the general form of the dynamics from simulation, much
less hardware training data is required. The hardware data only
serves to make adjustments to capture unmodeled dynamics and
does not necessarily need to be as representative or as plentiful as
would be required if hardware data was exclusively used to train
the neural network.

Our work toward compensating for modeling error with data-
driven learning is similar to Sun et al. (2019) where authors
use deep learning to predict physics-based modeling error of
water resources, Kaheman et al. (2019) where they present an
algorithm to learn a discrepancy model on an double inverted
pendulum, and Della Santina et al. (2020) where the authors
augment a model-based disturbance observer with a learned
correction factor on a soft robot. Most similar to our work is that
of Koryakovskiy et al. (2018) where they augment a non-linear
model predictive controller with various forms of learned actions
to compensate for model-plant mismatch on a rigid humanoid
robot. Other works that include using neural networks as the
backbone for predictive control are Piche et al. (2000) and Lu and
Tsai (2008).

2. FIRST PRINCIPLES AND DEEP
LEARNING

We start by providing an overview of our approach and how
it fits with the methods and hardware presented in subsequent
sections. Our overall approach to compensate for unknown
modeling errors starts with training a deep neural network to act
as a surrogate for the analytical model derived in section 2.1. This
surrogate DNN is needed to exploit the parallelized architecture
of modern GPUs, which in turn, affords higher control rates for
our non-linear MPC algorithm described in section 3.1. Details
related to the training of the surrogate DNN are presented in
section 2.2.

Next, we train a second deep neural network to compensate
for modeling discrepancies described in section 2.3. The methods
for training this error DNN are presented in section 2.4.

Once the surrogate and the error DNN are trained we evaluate
both in parallel, resulting in a combined forward prediction

Frontiers in Robotics and AI | www.frontiersin.org 2 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

FIGURE 1 | Photograph of soft robotic continuum joint used for this work. θ

and φ are the rotations about the joint’s x and y axes, respectively.

model (that we refer to as a combined DNN) which reflects
the dynamics of the hardware platform more accurately. By
improving the forward prediction capabilities of our model, we
enable the controller to find more optimal input trajectories and
thereby improve control performance. The methods involved in
validating the control performance using the combined DNN are
presented in section 3.4.

Data, code, models, and dynamic parameters are available at
https://github.com/BYU-PCCL/DL-MPC.

2.1. Robot Platform Description and
Modeling
The platform used for this work is a continuum joint comprised
of four pressurized bellows which encircle an inextensible steel
cable, as shown in Figure 1. Controlling the pressure in each of
the bellows results in a net torque which causes the joint to bend.
We use the same singularity-free kinematic relationships derived
by Allen et al. (2020) where the curvature of the continuum
joint is parameterized as two separate rotations (u and v) about
orthogonal axes (x and y), which lie at the base of the joint. For
notational clarity in this paper, we define θ = u and φ = v.

The dynamic model of the continuum joint is of the form

M(q)q̈+ C(q, q̇)q̇+ g(q) = τ (1)

where M(q) ∈ R
2×2 is the symmetric mass matrix, C(q, q̇) ∈

R
2×2 is the Coriolis matrix, g(q) ∈ R

2 is a vector of torques
caused by gravity, q(t) = [θ ,φ]⊤ is a vector of generalized
coordinates, and τ ∈ R

2 is a vector of generalized forces.
An analytical equation of motion of the form shown in

Equation (1) can be derived using principles of Lagrangian

mechanics by modeling the joint as an infinite set of
infinitesimally thin disks and integrating along the length of
a piecewise constant curvature (PCC) arc. This method was
developed in Hyatt et al. (2020a), which includes a detailed
derivation of this model.

There are also significant non-linear pressure dynamics inside
of the bellow actuators, where the rate of change in pressures is
on the same order of time response as the actual motion of the
robot. We model the pressure dynamics as a first-order system
such that

ṗ(t) = α(pref (t)− p(t)) (2)

where p(t) ∈ R
4 is a vector of pressures, pref (t) ∈ R

4 is a

vector of reference (i.e., commanded) pressures, and α ∈ R
4×4

is a diagonal matrix of coefficients representing the fill/vent rate
of the pneumatic valves. Numerical values for the parameters
used in this model are included in the repository accompanying
this paper.

Because each of the pressure bellows is made of deformable
plastic, there are several effects from material properties, such
as stiffness and damping that are not accounted for in Equation
(1). We include these effects as a linear spring term (Kspringq,
where Kspring is a diagonal matrix), which pulls the joint toward a
completely vertical configuration, and a viscous damping term
(Kdq̇, where Kd is also a diagonal matrix). The pressure-to-
torque mapping term (Kprsp) maps pressure differentials in
each antagonistic pair of bellows to a torque about each axis
where bending in φ and θ occur. These additions, coupled with
Equation (2), result in our final analytical dynamic model:

M(q)q̈+ C(q, q̇)q̇+ g(q) = Kprsp− Kdq̇− Kspringq (3)

For conciseness, we rearrange Equations (2) and (3) into a non-
linear state variable form

ẋ(t) =

−α 0 0
M−1Kprs M−1(−Kd − C) −M−1Kspring

0 I 0

p
q̇
q

 +

α

0
0

 pref (t)−M−1g (4)

where x(t) ≡ [p, q̇, q]⊤ and u(t) ≡ pref (t). We use x(t) and u(t)
for the remainder of this work.

2.2. Surrogate DNN Training
We first train a neural network to learn a state transition function
from simulated data using the analytical model described in
Equation (4). Previous work in the field of reinforcement learning
(OpenAI et al., 2019; Rao et al., 2020) demonstrated that using
simulated data, while not reflecting the world perfectly, allows the
model to learn more quickly and perform better than when the
model is trained on real-world data alone. Leveraging analytical
models and simulation environments also allows us to be able
to collect more data than would be physically possible since
simulations can run for long periods of time without supervision
and without the risk of damaging hardware. In simulation, data

Frontiers in Robotics and AI | www.frontiersin.org 3 May 2021 | Volume 8 | Article 654398

https://github.com/BYU-PCCL/DL-MPC
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

is cheap and easy to collect. With the only cost for collecting data
being computing power and time, we theoretically have access
to an infinite dataset without risking any damage to the real
robot hardware.

Training data is generated by numerically integrating
Equation (4) with a fourth order Runge-Kutta integration scheme
using a constant time step of 0.001 s in order to get accurate
simulation data. The pressure commands (u(t)) are square waves
randomly distributed between the minimum and maximum safe
operating pressures (8–400 kPa) in order to record both transient
and steady-state responses for DNN training. We use square
waves because of their ability to excite (and therefore learn)
more dynamic modes in the system compared to other common
test signals (e.g., sine waves or ramps). The simulated training
data consists of 12 simulation runs, each over a period of 250
s. Sampled at a rate of 0.001 s, this came out to three million
data points.

We frame the training process as a supervised learning
problem, with the current state (xt) and commanded pressures
(ut) being inputs, and the difference between the current state
and the next state (1xt = xt+1 − xt) as the output. Since the
changes in state are small over small time steps, by only requiring
the model to learn the difference in states, we free the model from
mostly having to learn the identity operation of copying over the
previous state with only small adjustments.

In training, we use a simple fully-connected network.
In situations where accuracy is desired more over speed, one
might instead opt for a long short-term memory (LSTM,
Hochreiter and Schmidhuber, 1997) or transformer neural
architecture (Vaswani et al., 2017). However, we chose to use
this small, simple network to allow for the very quick evaluation
time that is needed for NEMPC. Each network is composed
of three intermediate fully-connected networks which we call
Nx, Nu, and Nout . All hyperparameters, including the number
of hidden layers and hidden layer sizes, were chosen using a
hyperparameter search while maintaining the speed necessary for
real-time control (see Table 1 for full list of parameters). Nx and
Nu are fully-connected networks with two hidden layers, and 256
hidden nodes. Nout has two hidden layers and 512 hidden nodes.
For context, we let the state and network outputs be xt ,1xt ∈

R
8, and let the commanded pressure be ut ∈ R

4. We run xt
through Nx and ut through Nu to produce intermediate outputs
ox ∈ R

256 and ou ∈ R
256, respectively. The two intermediate

outputs are concatenated [oboth ∈ R
512 = concatenate(ox, ou)]

and run through Nout to produce the state transition from the
current time step to 0.02 s (the prediction rate of the controller)
in the future, 1x̂t = xt+1 − xt . Because our data was recorded at
1,000 Hz, we had to sample from our training data at the correct
frequency of 50 Hz (taking every twentieth data point) to help
the network learn at the desired control rate of 50 Hz. We use
70% of the data for training and reserve 30% for validation. For a
diagram of the architecture, please refer to Figure 2. We calculate
the loss to be the L1-norm plus the cosine distance.

l = ‖xt − x̂t‖1 + c(xt , x̂t) (5)

where cosine distance (c) is

c(xt , x̂t) = 1−
xt · x̂t

‖xt‖2‖x̂t‖2
(6)

We chose this loss in order to account for both the total absolute
error and the direction of change. This direction of change
matters because if the predicted rate of change in our state has
the wrong sign, this can cause significant stability problems for
model-based control. Note that we normalize xt and ut to have a
mean of zero and standard deviation of one before running them
through Nx and Nu to allow for faster training. The difference
between states 1xt = xt+1 − xt is scaled by the standard
deviation before calculating the loss function to allow the loss
function to weight all state variables equally, regardless of the
unit, but is not shifted by the mean to preserve direction. At
evaluation time, we re-scale the derivative to the correct units
with our cached standard deviations.

Algorithm 1 Surrogate DNN Training Procedure

1: for epoch = 1 to NumEpochs do
2: for each simulated training sequence of length n do ⊲

Around 2 million training sequences
3: Let x0, x1, ..., xn be sequence of states ⊲ Each xi is a

vector of size 8
4: Let u0, u1, ..., un−1 be sequence of commanded

pressures ⊲ Each ui is a vector of size 4
5: x̂1 = Nsim(x0, u0)+ x0 ⊲ Only allow DNN to see first

true state
6: l = ‖xt − x̂t‖1 + c(xt , x̂t) ⊲ Calculate loss
7: for i = 1 to n− 1 do
8: x̂i+1 = Nsim(x̂i, ui)+ x̂i ⊲ Use previous estimated

state to propagate loss/error
9: l = l+ ‖xt − x̂t‖1 + c(xt , x̂t) ⊲ Add loss at each

time step
10: end for

11: Backpropagate l ⊲ Backpropagate total loss
12: Update Nsim weights with Adam optimizer
13: end for

14: end for

For non-linear model predictive control (NEMPC), or any
other predictive control algorithm, we need to be able to
accurately predict more than just one time step ahead. To make
our DNN more robust and accurate across longer time intervals,
we do not train the network to only predict one time step into the
future. Instead, we only allow the network to see the first state in
a sequence (like an initial condition for numerical integration).
Then using the pressure inputs, we train the network to estimate
n steps forward by recursively running the estimated states
through the network. Note that we backpropagate the total loss
over the entire trajectory at each training step. By training this
way, we can be more confident that any unmodeled error will not
propagate forward in time. When choosing the number of steps
(n) for forward propagation of the dynamic model, one should
consider the desired horizon where we need the most accurate

Frontiers in Robotics and AI | www.frontiersin.org 4 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

TABLE 1 | Hyperparameters used for training each type of DNN.

Data Hidden layers Hidden sizes Learning rate Activation Dropout

Nsim Simulated 2, 2 256, 512 1.89e-4 Leaky ReLU 0.396

Nerr Hardware 2, 2 256, 512 7.99e-4 Leaky ReLU 0.396

FIGURE 2 | DNN Architecture, used for both the surrogate model and the error model.

predictions. We chose n = 100 so that our model would be able
to predict 2 s (100 · 0.02 s) into the future–a horizon longer than
most that would be used with NEMPC–as detailed in section 3
(For reference, the time horizon we use in this work for real-time
control is 0.1 s).

We train the surrogate DNN on data gathered from the
analytical model described in section 2.1. For a detailed
description of the training procedure, please refer to Algorithm
1. Note that we refer to the surrogate DNN as Nsim.

2.3. Dynamic Model Inaccuracies
In this section we discuss in more detail the modeling errors and
partially correct assumptions that exist in the dynamic model
presented in section 2.1 in an attempt to understand and gain
intuition as to how the trained error model will compensate
during real-time control.

Regarding Equation (2), we acknowledge that the real pressure
dynamics on hardware are not simply first order. For example, we
do not model the dynamics of the valves used to control pressures
(which can cause choked or unchoked fluid flow) and the
differences in the pressure dynamics depending on whether the
chambers are filling or venting from different pressure reservoirs.
In Equation (3), we assume a linear pressure to torque mapping
(Kprsp), a linear damping term (Kdq̇), and a linear spring term

(Kspringq). These terms do not capture non-linear behaviors, such
as increased stiffness and damping that exist near joint limits, nor
do they reflect any wear in the materials due to usage over time.
We also suspect some hysteresis in the movement of the joint,
as well as an offset in the resting equilibrium position for φ and
θ of the robot due to plastic deformation in each of the robot’s
pressure chambers. None of these previous effects are explicitly
included in the dynamic model of the robot.

While previous work (Hyatt et al., 2020a) demonstrated that
this formulation of the dynamic model was accurate enough
for model-based control, improvements are needed in order to
control soft robots in uncertain environments or during highly
dynamic movements. Certainly, further system identification
would improve this model; however, because of the complexities
and uncertainties inherent in soft robots and the processes to
manufacture them, system identification techniques scale poorly
with high degree-of-freedom systems and do not necessarily
generalize well between platforms. The error model developed in
this paper offers a scalable technique to compensate for modeling
error while still maintaining generality between platforms.

2.4. Error DNN Training
To train an error model that is capable of compensating for
the model inaccuracies described in section 2.3, we first collect

Frontiers in Robotics and AI | www.frontiersin.org 5 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

hardware data by sending and recording bounded random
pressure inputs u(t) to the robot. The robot’s internal pressure
controller ensures that the pressure in each of the bellows
reaches the commanded pressure. Note that the minimum and
maximum safe operating pressures (8–400 kPa) are also respected
here through external pressure regulation. We record the joint
positions and pressures directly and estimate joint velocities
numerically. This process is repeated for each time step until
a suitable quantity of training data is gathered (see Figure 3).
By nature, this hardware data is noisy and inconsistent, with
sampling rates varying slightly during the data collection process.
In order to train on data with uniform spacing, we interpolate
between real data points to estimate the state vector and inputs at
regular 0.001 s intervals. We trained with more simulated data
than hardware data, with only seven hardware runs which are
each 90 s long, coming out to 630,000 data points.We use 540,000
data points for training and 90,000 to validate the model.

With the data gathered from the hardware, we were able to
train the error DNN. First, we sample the data at the desired
time interval for which the surrogate model was trained (0.02 s).
We then freeze the weights of the surrogate DNN, and divide
our dataset into sequences of length n = 100. In a similar
training procedure as before, we only allow the network to see
the first state x0, and task it with predicting the next n states
given the commanded pressures u0, u1, ..., un−1. We run the
states through the surrogate DNN, and add to its output the
output of the error DNN. Thus, the error model does not have
to learn the first-principle physics that the surrogate DNN has
already learned. Instead, it only has to learn the discrepancies
between the simulation and reality, as discussed in section 2.3.
We pass the first state and sequence of commanded pressures n
times recursively through both the surrogate and error networks,
calculate loss between the true and predicted error, and update
the error network’s weights (see Algorithm 2). We use 80% of the
data for training and reserve 20% for validation. Note that we
refer to this error DNN as Nerr . When convergence is reached,
both DNN models are ready to be utilized within NEMPC for
forward prediction of the robot’s behavior.

2.5. Modeling Results
To test the relative fidelity of each model and compare their
responses, we simulate the analytical model, the surrogate DNN,
and the combined DNN (i.e., the surrogate DNN plus the
error DNN or Nsim + Nerr) with a random step trajectory
of commanded pressures (u(t)). This same pressure trajectory
is then also commanded on hardware to enable a complete
comparison between all models and the actual hardware
platform. Figures 4–6 compare the dynamic response of the
four different systems (e.g., analytical model, Nsim, Nsim + Nerr ,
actual hardware) in pressure, angular velocity, and joint angles,
respectively. It is important to note that while there is significant
steady-state error as well as some unmodeled transients in all
three figures, the analytical model captures the general trends of
the hardware data. Because these trends are naturally embedded
in the training data, the error DNN is only required to learn
small adjustments which requires much less data than learning
the dynamics from scratch. Additionally, in all three figures,

Algorithm 2 Error DNN Training Procedure

1: Freeze Nsim weights
2: for epoch = 1 to NumEpochs do
3: for each hardware training sequence of length n do ⊲

About 540 thousand training sequences
4: Let x0, x1, ..., xn be sequence of states
5: Let u0, u1, ..., un−1 be sequence of commanded

pressures
6: x̂1 = Nerr(x0, u0)+ Nsim(x0, u0)+ x0 ⊲ Add Nerr

output to simulation model, learn the gap
7: l = ‖xt − x̂t‖1 + c(xt , x̂t)
8: for i = 1 to n− 1 do
9: x̂i+1 = Nerr(x̂i, ui)+ Nsim(x̂i, ui)+ x̂i
10: l = l+ ‖xt − x̂t‖1 + c(xt , x̂t)
11: end for

12: Backpropagate l
13: Update Nerr weights with Adam optimizer
14: end for

15: end for

16: Define DNN such that DNN(xt , ut) = Nsim(xt , ut) +

Nerr(xt , ut)

the surrogate DNN tracks the analytical model with relatively
small error. This indicates that the surrogate DNN training was
successful. Because the surrogate DNN is trained with simulated
data, it could easily be improved further by running more
simulations. Likewise, the combined DNN tracks the hardware
data well.

It is clear from Figure 4 that the error DNN learned that
the actual pressure dynamics on hardware are not first order as
is predicted by the analytical and surrogate DNN. We believe
these differences arise from valve/flow dynamics when venting or
filling a pressure chamber aggressively. The most salient feature
in Figure 5 is that the velocities on hardware tend to lag behind
those of the analytical model due to the filtering of measured
position data, which introduces a small phase lag. Interestingly,
the combined DNN still tracks the hardware data well, revealing
a promising ability to compensate for errors introduced not only
by modeling error, but also by state estimation. We also note
that in a few cases (around 6 s in the lower subplot of Figure 5),
the analytical model actually predicts a velocity in the wrong
direction. We suspect this may be due to unmodeled non-linear
stiffness properties of the robot because at this moment in time
(6 s), the robot is near its upper joint limit of 1.5 radians in both
θ and φ (see Figure 6).

Our primary observation from Figure 6 is the large steady-
state offset caused by plastic deformation on the real hardware
resulting in a non-zero equilibrium configuration in the joint
angles θ and φ, but which is not present in the analytical model
and the surrogate DNN. The errormodel is able to eliminatemost
of the offset and track the hardware data well. While there are
some small transient dynamics in the hardware data that were not
learned by the error DNN (e.g., the 4, 6, and 18 s marks for θ or
4, 6, and 16 s marks for φ in Figure 6), the error DNN prediction

Frontiers in Robotics and AI | www.frontiersin.org 6 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

FIGURE 3 | This diagram shows the method used to generate error training data. A random step input pressure trajectory u is sent to the hardware and the states are

recorded. The same input trajectory is simulated using the surrogate DNN which takes u and x as inputs. The resulting state trajectory is subtracted from the hardware

state trajectory to get the state tracking error over time. This allows the error DNN to predict error given the current state x and the current input u.

FIGURE 4 | Comparison of pressure dynamics between the four different systems used. The dashed line indicates the commanded pressure, while each of the solid

lines is the pressure response resulting from the commanded pressure input. Note that the states from the analytical model and the surrogate DNN match well and

that when using the combined DNN, the simulation closely resembles the hardware data.

performance is clearly superior to that of either the analytical or
surrogate DNN.

In an effort to explore the transferability of our model, we
also tested our DNNs, sending pressure trajectories that were
not used for training (e.g., sine waves and ramps). The results
of this experiment are shown in Figure 7. The left column is
the model prediction using sine wave pressure inputs and the
right column is the model prediction using ramp pressure inputs.
It is interesting to note that the error DNN (Nerr) learned to
compensate for some coupling clearly visible in θ , as well as some
offsets in both θ and φ that are not captured by the analytical
model or the surrogate DNN (Nsim) alone.

3. CONTROL

In this section, we present our control algorithm and our findings
based on several experiments in simulation and on hardware.

3.1. Non-linear Evolutionary Model
Predictive Control
Non-linear evolutionary model predictive control (NEMPC) was
developed as a real-time control algorithm for high degree of
freedom (DoF) robot platforms. A variant of model predictive
control (MPC), NEMPC utilizes an evolutionary algorithm
to solve the MPC optimization. By using an evolutionary

Frontiers in Robotics and AI | www.frontiersin.org 7 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

FIGURE 5 | Comparison of velocity dynamics between the four different models used. These velocities are the response resulting from the commanded pressure

inputs shown in Figure 4. Note that the surrogate DNN tracks the analytical model well while the combined DNN tracks the hardware data well.

FIGURE 6 | Comparison of joint angle dynamics between the four different models used. These angles are the response resulting from the commanded pressure

inputs shown in Figure 4.

algorithm, it is able to approximate a global minimum (as
opposed to an exact local minimum) because it explores more
of the solution space than local optimization methods. Extensive
implementation details can be found in papers by Hyatt and
Killpack (2020) and Hyatt et al. (2020b).

The implementation of NEMPC in this work differs from
the work in Hyatt and Killpack (2020) in that the algorithm
no longer mutates every child generated during mating. With
some probability Pmutate, children are selected for mutation.
Those children have each of their genes perturbed by a uniform

Frontiers in Robotics and AI | www.frontiersin.org 8 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

distribution on the interval (−σ , σ). This allows the search to
refine individual trajectories while still preserving others.

For this paper, we implement the typical quadratic cost
function formulation used in other MPC schemes with one small
modification that places a cost on the change in inputs (i.e.,
1ut = ut − ut−1) as opposed to ut itself. This forces NEMPC
to generate more conservative solutions which in turn, cause
pressure to vary more smoothly over time. Note that the cost
on change in inputs is a competing optimization objective with
position tracking and requires some tuning ofQ and R to achieve
good tracking performance while also maintaining smooth input
trajectories. The optimization is formulated as

minimize J =

T−1
∑

t=0

[

(xt − xgoal)
⊤Q(xt − xgoal)

+ 1u⊤t R1ut

]

+ (xT − xgoal)
⊤Qf (xT − xgoal)

w.r.t. ut , ∀t ∈ 0, 1, . . . ,T

s.t. xmin ≤ xt ≤ xmax, ∀t ∈ 0, 1, . . . ,T

umin ≤ ut ≤ umax, ∀t ∈ 0, 1, . . . ,T

xt+1 = xt + N, ∀t ∈ 0, 1, . . . ,T

(7)

where

N = Nsim(xt , ut) (8)

or

N = Nsim(xt , ut)+ Nerr(xt , ut). (9)

In Equation (7), J is a scalar representing the cost of a given input
sequence, T is the simulation horizon over which that input series
is applied, and Q ∈ R

8×8, Qf ∈ R
8×8 and R ∈ R

4×4 are diagonal
weighting matrices penalizing error, error at the final time step
of the horizon, and actuator effort, respectively. xt represents the
state vector and ut is the input vector. xgoal is the commanded
robot state. Q and Qf are weighted such that the only values of
xgoal that contribute to the cost J are the position and velocity
states. The variable N is a placeholder for the DNN that NEMPC
uses. For the case using the surrogate DNN defined in section 2.2,
NEMPC enforces the constraint given in Equation (8). For the
combined case defined in section 2.4, NEMPC uses the constraint
given in Equation (9).

At each time step, the optimizer is allowed to take a single
step toward the optimum (or one generation of the genetic
algorithm). NEMPC then returns the input associated with the
lowest cost member of the population for the current time
step, which is applied to the hardware system. As soon as
that command is sent, NEMPC takes another step toward the
optimum, given new measurements of the robot’s state. The fact
that the previous time step’s population is used to warm start the
next optimization causes the algorithm to converge quickly.

As a practical note, the tuned weights in Q corresponding to
the pressure states are 0 because we are not trying to follow a
pressure trajectory or specify stiffness. This allows NEMPC to

find any valid set of pressure states that will enable tracking of
desired velocity and positions. Positions are weighted heavily and
velocities relatively lightly.

The introduction of a DNN as NEMPC’s internal model of the
plant is a key component that enables NEMPC’s execution at real-
time speed and the evaluation of an entire population of solutions
in batches. This allows a large graphics processing unit (GPU)
to simultaneously evaluate all 1,500 potential input series at any
given time step. In our work, we are able to control the eight state
soft robot continuum joint at a rate of 100 Hz with a time horizon
of 0.1 s.

3.2. Simulation Experiment
To validate the efficacy of the NEMPC controller, a simulated
experiment is run using the analytical model of the soft robot
continuum joint as the plant, and the surrogate DNN as the
internal control model of the system. As in later hardware
experiments, NEMPC is fed a reference trajectory in θ and φ,
and calculates a set of reference pressures u∗t which are then
applied to the dynamic system (simulated with the analytical
model in this case). This experiment is not run in real time, due
to the computational time required to numerically integrate the
analytical model of the robot.

3.3. Simulation Results
The results of the simulation experiment can be seen in Figure 8.
Since the surrogate DNN is a good approximation of the
simulated robot, NEMPC is able to find near-optimal solutions
with relative ease. From these results, we see that Non-linear
Evolutionary Model Predictive Control is capable of generating
excellent control inputs for a system that is well-approximated
by a surrogate DNN. However, when NEMPC is used to control
the hardware with a surrogate DNN, the results are much worse
because the surrogate DNN is a poor approximation of the
dynamics for the real hardware (see section 3.4).

3.4. Hardware Experiments
After validating NEMPC’s performance in simulation, we
evaluate the performance of NEMPC while controlling the soft
robot continuum joint, following a reference trajectory in θ and
φ. This experiment is run twice, once while NEMPC’s internal
model of the robot is represented by the surrogate DNN (Nsim),
and once while NEMPC’s internal model is represented by the
combined DNN (Nsim + Nerr).

We use two HTC Vive Trackers rigidly attached to the robot
base and tip in order to measure joint angles (θ and φ) in
real-time (see Figure 9), while the joint velocities (θ̇ and φ̇) are
numerically differentiated from the angle measurements. The
pressures in each of the robot’s four chambers are measured by
onboard sensors and controlled by an embedded high-frequency
PID controller. All of this data is packaged and published via
the Robot Operating System (ROS) at 400 Hz to a separate
computer on the network with an 8 core Intel Xeon E5-1620
CPU and an NVIDIA GeForce GTX 1080 Ti GPU, which is
dedicated to running the NEMPC algorithm. As shown by
Thompson et al. (2020), the hardware requirements for major
deep learning papers have increased quickly with time, so we

Frontiers in Robotics and AI | www.frontiersin.org 9 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

FIGURE 7 | Comparison of joint angle dynamics between the four different models used on different test signals. The left column is in response to sine waves in

pressure commands and the right column is in response the ramp inputs in pressure commands. Note that the combined DNN, although not trained on sines and

ramps, still predicts unmodeled dynamics.

FIGURE 8 | The control performance of NEMPC in simulation. For this trial, the analytical model of the soft robot continuum joint acts as the plant, while NEMPC uses

the surrogate DNN as its internal model of the system. Since the surrogate DNN is a very good approximation of the analytical model of the robot, the controller has a

near perfect model of the plant, resulting in excellent tracking performance.

believe that our single-GPU setup is relatively inexpensive and
computationally cheap.

Figure 10 illustrates the process as a control diagram. The
controller is given an xdes(t) which is used in conjunction with

the current state estimate x̂t to calculate an optimal pressure
command u∗. This command is sent to the embedded PID
pressure controller and then pressures and joint angles are
measured directly.

Frontiers in Robotics and AI | www.frontiersin.org 10 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

3.5. Hardware Results
The results of the hardware experiments are presented in
Figure 11. When the surrogate DNN is used as NEMPC’s internal
model to control the soft robot hardware, NEMPC struggles to
follow the desired path for θ and φ. This behavior is likely due
to the surrogate DNN’s poor approximation of the hardware
dynamics, as evaluated in section 2.5. Evidence of this is found
in the performance of NEMPC while internally simulating with
the combined DNN.

When NEMPC controls the hardware while using the
combined DNN as its internal model, the reference tracking
performance shown in Figure 11 improves significantly. With
a more accurate internal model, NEMPC is able to generate
solutions that better account for factors, such as the robot’s
plasticity (e.g., non-zero equilibrium configuration), hysteresis,
and increased stiffness and damping near joint limits. This results

FIGURE 9 | Diagram of the experimental setup for the hardware experiments.

Also illustrated here is the inherent plasticity of the robot, resulting in a variable

offset in θ and φ. Over time, the plastic in the pressure chambers deforms and

causes the robot to have an equilibrium configuration that is not vertical.

in a much lower steady-state offset, and more rapid convergence
in some cases.

Quantitatively, the reference tracking behavior of NEMPC
can be measured through a statistical analysis of the tracking
error for each experiment. A statistical comparison of NEMPC
performance can be found in Table 2. The mean tracking error
decreased from 0.378 to 0.182 rad, a 52% decrease. The median
tracking error decreased by almost an order of magnitude. Of
particular note is the difference in integral of the time-weighted
absolute error (ITAE) for each trial. Thismeasure penalizes errors
that persist over time, and allows a controller to be slightly less
aggressive, as long as it converges and stays close to its target.
The ITAE is calculated for each step input individually, summed
over the whole series of step inputs, then recorded. As seen in
the table, NEMPC with the combined DNN greatly outperforms
NEMPC with the surrogate DNN in regards to ITAE, in part due
to its lack of significant steady-state error. The surrogate DNN
could be helped by the addition of an integrator to the controller,
as done in previous work with NEMPC by Hyatt and Killpack
(2020).

What is most impressive in this case is that by incorporating
the combined DNN with NEMPC, we achieve very low steady-
state error with no integral control at all. All of our prior work
(and most of the soft robot control literature) has required some
sort of integral or adaptive control to compensate for this steady-
state error (see Hyatt et al., 2020a for an example of model-
reference adaptive control (MRAC) which essentially exhibits
integral action to achieve low steady-state error).

The implementation of an integrator could help reduce
steady-state tracking error for the surrogate DNN controller, but
the control would still suffer from overshoot and generally poor
performance. The mean, median, and standard deviation of the
tracking error would likely remain indicators of the surrogate
DNN’s relatively poor performance. To visualize the insights
offered by the mean, median, and standard deviation of the
tracking error, Figure 12 presents a histogram of the normalized

FIGURE 10 | Control diagram for running NEMPC in conjunction with the learned error model. u∗ indicates the optimal input chosen by the controller. This input is

sent to the embedded pressure controller and we measure pressures p and positions q directly, while estimating q̇.

Frontiers in Robotics and AI | www.frontiersin.org 11 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

FIGURE 11 | Comparison of tracking performance on the physical soft robot continuum joint while using the two categories of DNN model approximation. Note that

the control performance of NEMPC while using the combined DNN contains much less steady-state tracking error than the control performance of NEMPC while

using the surrogate DNN.

TABLE 2 | Comparison of control performance of NEMPC with error compensation vs. NEMPC without error compensation.

ITAE Mean tracking error Median tracking error Execution time

Nsim 128.3496 rad2 s 0.37820 rad 0.31736 rad 0.0006 s (464x)

Nsim + Nerr 21.5252 rad2 s 0.18180 rad 0.03676 rad 0.0009 s (287x)

The integral of the time-weighted absolute error (ITAE) is a performance measure often used in tuning control algorithms, and is a measure of convergence for a given trajectory. The

execution time for a single time step is listed in seconds as well as a multiplier of many times faster the DNN execution time was compared the analytical model implemented in C++.

frequency of error for each of the two experiments on hardware.
Visible in the plot for the surrogate DNN is the angle offset due
to the robot’s non-zero equilibrium configuration. The surrogate
DNN causes NEMPC to tend toward negative error in θ and
positive error in φ. When the error model in the combined
DNN is introduced, both θ and φ error are pulled toward zero,
becoming uni-modal and more normally distributed. Overall,
the combined DNN is a much better approximation of the
robot’s dynamics, allowing NEMPC to follow the given reference
trajectory much more effectively, even with fast changes (step
inputs) in the commanded changes for φ and θ .

To validate that the combined DNN can be used for control

trajectories other than step inputs, we conducted two more
experiments: one for tracking sin waves in φ and θ and a second
for tracking ramps in φ and θ . The results can be seen in
Figure 13. From these figures, it is apparent that the training data
consisting of only step inputs is enough for theDNN to accurately
predict the performance of the robot while tracking other wave
forms. There is a nominal amount of phase lag in both cases,
but this is expected because, in our implementation of NEMPC,
xgoal for the entire prediction horizon remains constant while
the waveform continuously changes. This could be overcome

(without changing our formulation at all) by simply allowing
NEMPC to use a continuous xgoal trajectory instead of a single
constant value which we used.

4. CONCLUSIONS AND FUTURE WORK

In this work we demonstrate that significant model and control
improvement is possible through a data-driven deep learning
approach. Our approach does not require specialized expertise
or any assumptions about the form of the model. As a result,
this method is generally applicable to any model-based control
problem where the plant dynamics are highly uncertain or only
partially known.

Additionally, because our approach is rooted in a physics-
based analytical model and our error DNN only needs to learn
relatively small adjustments, the error DNN can be smaller, faster,
and train with less data than would be required if we took
a completely model-free learning approach. This is especially
beneficial when gathering training data on hardware is dangerous
or expensive, as is often the case in the field of robotics (albeit less
so for many soft robots).

Frontiers in Robotics and AI | www.frontiersin.org 12 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

FIGURE 12 | A histogram of the normalized frequency of θ and φ tracking error in the hardware experiments. Note that the data gathered while using the surrogate

DNN for control has θ error and φ error that is biased in both directions away from zero. This is a result of the surrogate DNN’s lack of information regarding the offsets

in θ and φ at equilibrium. Also note the difference in y axis scaling for both histograms.

FIGURE 13 | Comparison of tracking performance on sine (left column) and ramp (right column) test signals using the Nsim + Nerr DNN configuration for control. Note

that although both DNNs were trained solely on step inputs, the models are able to generalize well to other types of signals.

In future work we hope to improve DNN accuracy, including
using a state buffer. Currently, the DNN state transition model
can only see the current state and commanded pressures–in

other words, we assume that the state transition model is a first-
order Markov process. If hysteresis and other non-linear, state-
dependent phenomenon are present, then performance may

Frontiers in Robotics and AI | www.frontiersin.org 13 May 2021 | Volume 8 | Article 654398

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

improve by including a buffer of the last n states. This time
sequence data could be leveraged by a fully-connected network,
or some kind of recurrent neural network (RNN). However, this
approach may slow the evaluation of the network.

An important preliminary result, though not discussed in-
depth in this paper, is that themodel and controller were sensitive
to the frequency content in the data used for training. The effects
of this were significant, but are currently poorly understood.
However, we have presented evidence that using square waves to
explore and learn the state space is an efficient method because
the trained models generalized relatively well to sine waves and
ramps. We also note from our experiments that the inverse
relationship is not true; models trained on sine waves and ramps
generally did not perform well when tested on step inputs. We
believe this is because square waves excite more dynamic modes
than sine waves or ramp inputs in pressure. Further exploration
into deep learning dynamics in a generalized fashion could
be valuable as future work, especially in regards to specifically
learning frequency content and modes of a dynamical system.
This could produce even higher fidelity models. A downside
to our approach is that if anything causes the plant dynamics
to change, a small period of retraining would be required to
maintain model fidelity. Future work could include a learning
approach which allows the platform to continuously learn an
error model online. Additionally, we recognize that exploring
the state space randomly to gather training data is not always
possible on some hardware platforms. Future work could include
an exploration of how learning from a safe subspace of the

state space can generalize to control over the entire reachable
state space.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CJ contributed a general problem formulation, collected the
training data, and ran the experiments. TQ contributed with
NEMPC controller improvements and running experiments.
TS contributed DNN structures and training methods. CJ, TS,
and TQ contributed equally to writing the paper. DW and
MK assisted in developing the methodology and in advisory
roles. All authors contributed to the article and approved the
submitted version.

FUNDING

This material was based upon work supported by the National
Science Foundation under Grant no. 1935312.

ACKNOWLEDGMENTS

We would like to acknowledge the work of Phillip Hyatt for his
initial development of the NEMPC algorithm.

REFERENCES

Allen, T. F., Rupert, L., Duggan, T. R., Hein, G., and Albert, K. (2020). “Closed-

form non-singular constant-curvature continuum manipulator kinematics,”

in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)

(New Haven, CT), 410–416. doi: 10.1109/RoboSoft48309.2020.9116015

Della Santina, C., Bicchi, A., and Rus, D. (2020). On an improved state

parametrization for soft robots with piecewise constant curvature and

its use in model based control. IEEE Robot. Autom. Lett. 5, 1001–1008.

doi: 10.1109/LRA.2020.2967269

Gillespie, M. T., Best, C. M., Townsend, E. C., Wingate, D., and Killpack,

M. D. (2018). “Learning nonlinear dynamic models of soft robots

for model predictive control with neural networks,” in 2018 IEEE

International Conference on Soft Robotics (RoboSoft) (Livorno: IEEE),

39–45. doi: 10.1109/ROBOSOFT.2018.8404894

Hewing, L., Kabzan, J., and Zeilinger, M. N. (2020). Cautious model predictive

control using gaussian process regression. IEEE Trans. Control Syst. Technol.

28, 2736–2743. doi: 10.1109/TCST.2019.2949757

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hyatt, P., Johnson, C. C., and Killpack, M. D. (2020a). Model reference predictive

adaptive control for large-scale soft robots. Front. Robot. AI 7:558027.

doi: 10.3389/frobt.2020.558027

Hyatt, P., and Killpack, M. D. (2017). “Real-time evolutionary model predictive

control using a graphics processing unit,” in 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids) (Birmingham: IEEE),

569–576. doi: 10.1109/HUMANOIDS.2017.8246929

Hyatt, P., and Killpack, M. D. (2020). Real-time nonlinear model predictive

control of robots using a graphics processing unit. IEEE Robot. Autom. Lett.

5, 1468–1475. doi: 10.1109/LRA.2020.2965393

Hyatt, P., Williams, C. S., and Killpack, M. D. (2020b). Parameterized and gpu-

parallelized real-time model predictive control for high degree of freedom

robots. arXiv 2001.04931.

Kabzan, J., Hewing, L., Liniger, A., and Zeilinger, M. N. (2019). Learning-based

model predictive control for autonomous racing. IEEE Robot. Autom. Lett. 4,

3363–3370. doi: 10.1109/LRA.2019.2926677

Kaheman, K., Kaiser, E., Strom, B., Kutz, J. N., and Brunton, S. L. (2019). Learning

discrepancy models from experimental data. arXiv 1909.08574.

Kaiser, E., Kutz, J. N., and Brunton, S. L. (2018). Sparse identification of nonlinear

dynamics for model predictive control in the low-data limit. Proc. R. Soc. A

Math. Phys. Eng. Sci. 474:20180335. doi: 10.1098/rspa.2018.0335

Katzschmann, R. K., Thieffry, M., Goury, O., Kruszewski, A., Guerra, T. M.,

Duriez, C., et al. (2019). “Dynamically closed-loop controlled soft robotic arm

using a reduced order finite element model with state observer,” in 2019 2nd

IEEE International Conference on Soft Robotics (RoboSoft) (Seoul), 717–724.

doi: 10.1109/ROBOSOFT.2019.8722804

Koryakovskiy, I., Kudruss, M., Vallery, H., Babuka, R., and Caarls, W. (2018).

Model-plant mismatch compensation using reinforcement learning. IEEE

Robot. Autom. Lett. 3, 2471–2477. doi: 10.1109/LRA.2018.2800106

Lu, C., and Tsai, C. (2008). Adaptive predictive control with recurrent neural

network for industrial processes: an application to temperature control of

a variable-frequency oil-cooling machine. IEEE Trans. Indu. Electron. 55,

1366–1375. doi: 10.1109/TIE.2007.896492

Mohajerin, N., Mozifian, M., andWaslander, S. (2018). “Deep learning a quadrotor

dynamic model for multi-step prediction,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA) (Brisbane, QLD), 2454–2459.

doi: 10.1109/ICRA.2018.8460840

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew,

B., et al. (2019). Solving rubik’s cube with a robot hand. arXiv [Preprint]

arXiv:1910.07113.

Frontiers in Robotics and AI | www.frontiersin.org 14 May 2021 | Volume 8 | Article 654398

https://doi.org/10.1109/RoboSoft48309.2020.9116015
https://doi.org/10.1109/LRA.2020.2967269
https://doi.org/10.1109/ROBOSOFT.2018.8404894
https://doi.org/10.1109/TCST.2019.2949757
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3389/frobt.2020.558027
https://doi.org/10.1109/HUMANOIDS.2017.8246929
https://doi.org/10.1109/LRA.2020.2965393
https://doi.org/10.1109/LRA.2019.2926677
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.1109/ROBOSOFT.2019.8722804
https://doi.org/10.1109/LRA.2018.2800106
https://doi.org/10.1109/TIE.2007.896492
https://doi.org/10.1109/ICRA.2018.8460840
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Johnson et al. Deep Learning and Model-Based Control

Ostafew, C. J., Schoellig, A. P., Barfoot, T. D., and Collier, J. (2016). Learning-based

nonlinear model predictive control to improve vision-based mobile robot path

tracking. J. Field Robot. 33, 133–152. doi: 10.1002/rob.21587

Piche, S., Sayyar-Rodsari, B., Johnson, D., andGerules,M. (2000). Nonlinearmodel

predictive control using neural networks. IEEE Control Syst. Mag. 20, 53–62.

doi: 10.1109/37.845038

Pierson, H. A., and Gashler, M. S. (2017). Deep learning in robotics: a review of

recent research. Adv. Robot. 31, 821–835. doi: 10.1080/01691864.2017.1365009

Pozzi, M., Miguel, E., Deimel, R., Malvezzi, M., Bickel, B., Brock, O., et al. (2018).

“Efficient fem-based simulation of soft robots modeled as kinematic chains,”

in 2018 IEEE International Conference on Robotics and Automation (ICRA)

(Brisbane, QLD: IEEE), 4206–4213. doi: 10.1109/ICRA.2018.8461106

Rao, K., Harris, C., Irpan, A., Levine, S., Ibarz, J., and Khansari, M. (2020).

“Rl-cyclegan: Reinforcement learning aware simulation-to-real,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(Seattle,‘WA), 11157–11166.

Rus, D., and Tolley, M. T. (2015). Design, fabrication and control of soft robots.

Nature 521, 467–475. doi: 10.1038/nature14543

Soloperto, R., Mller, M. A., Trimpe, S., and Allgöwer, F. (2018). Learning-based

robust model predictive control with state-dependent uncertainty. IFAC Pap.

Online 51, 442–447. doi: 10.1016/j.ifacol.2018.11.052

Sun, A. Y., Scanlon, B. R., Zhang, Z., Walling, D., Bhanja, S. N., Mukherjee,

A., et al. (2019). Combining physically based modeling and deep learning for

fusing grace satellite data: Can we learn frommismatch?Water Resour. Res. 55,

1179–1195. doi: 10.1029/2018WR023333

Sünderhauf, N., Brock, O., Scheirer,W., Hadsell, R., Fox, D., Leitner, J., et al. (2018).

The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37,

405–420. doi: 10.1177/0278364918770733

Thompson, N. C., Greenewald, K., Lee, K., and Manso, G. F. (2020). The

computational limits of deep learning. arXiv [Preprint]. arXiv:2007.05558.

Thuruthel, T. G., Ansari, Y., Falotico, E., and Laschi, C. (2018). Control

strategies for soft robotic manipulators: a survey. Soft Robot. 5, 149–163.

doi: 10.1089/soro.2017.0007

Thuruthel, T. G., Falotico, E., Renda, F., and Laschi, C. (2017). Learning dynamic

models for open loop predictive control of soft robotic manipulators. Bioinspir.

Biomimet. 12:066003. doi: 10.1088/1748-3190/aa839f

Thuruthel, T. G., Falotico, E., Renda, F., and Laschi, C. (2019). Model-based

reinforcement learning for closed-loop dynamic control of soft robotic

manipulators. IEEE Trans. Robot. 35, 124–134. doi: 10.1109/TRO.2018.2878318

Till, J., Aloi, V., and Rucker, C. (2019). Real-time dynamics of soft and

continuum robots based on cosserat rod models. Int. J. Robot. Res. 38, 723–746.

doi: 10.1177/0278364919842269

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.

(2017). Attention is all you need. arXiv [Preprint]. arXiv:1706.03762.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Johnson, Quackenbush, Sorensen,Wingate and Killpack. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Robotics and AI | www.frontiersin.org 15 May 2021 | Volume 8 | Article 654398

https://doi.org/10.1002/rob.21587
https://doi.org/10.1109/37.845038
https://doi.org/10.1080/01691864.2017.1365009
https://doi.org/10.1109/ICRA.2018.8461106
https://doi.org/10.1038/nature14543
https://doi.org/10.1016/j.ifacol.2018.11.052
https://doi.org/10.1029/2018WR023333
https://doi.org/10.1177/0278364918770733
https://doi.org/10.1089/soro.2017.0007
https://doi.org/10.1088/1748-3190/aa839f
https://doi.org/10.1109/TRO.2018.2878318
https://doi.org/10.1177/0278364919842269
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Using First Principles for Deep Learning and Model-Based Control of Soft Robots
	1. Introduction
	1.1. Related Work

	2. First Principles and Deep Learning
	2.1. Robot Platform Description and Modeling
	2.2. Surrogate DNN Training
	2.3. Dynamic Model Inaccuracies
	2.4. Error DNN Training
	2.5. Modeling Results

	3. Control
	3.1. Non-linear Evolutionary Model Predictive Control
	3.2. Simulation Experiment
	3.3. Simulation Results
	3.4. Hardware Experiments
	3.5. Hardware Results

	4. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

