

## Modeling, Planning, and Control for Whole-Body Manipulation of Unknown Objects with Large-Scale Soft Robots

Curtis Johnson

## Vocabulary

#### "Manipulation": Agent's control of environment through selective contact









## Vocabulary

"Open World": The idea that the world is inherently unstructured and objects have infinite variability







- Problem Statement
- Background
- Research Objectives
- Proposed Research
- Anticipated Contributions

• What if we want a robot to manipulate large/heavy objects?



• What if we want a robot to manipulate large/heavy objects?



 Since the object is large/heavy, how can a robot reason about objects whose physical properties are unknown?



(a)



• Some inspiration from nature





| Modeling, Planning, and Control | → Robot reasoning           |
|---------------------------------|-----------------------------|
| for Whole-Body Manipulation     | ─── For Large/Heavy Objects |
| of Unknown Objects              |                             |
| with Large-Scale Soft Robots    | Type of robot               |

# How to do this?

- Problem Statement
- Background
- Research Objectives
- Proposed Research
- Anticipated Contributions

- Problem Statement
- Background
  - Whole Body Manipulation
- Research Objectives
- Proposed Research
- Anticipated Contributions

- Mechanism Design
- Perception
- Modeling and Control with Contact
- Planning

- Main Challenges:
  - Mechanism Design
  - Perception
  - Modeling and Control with Contact
  - Planning

- 2 Approaches to mechanism design:
  - Outfit with soft materials
  - Soften manipulator
- 'Mechanical Intelligence'
- Potential of Soft Robots



• Perception - Tactile





Fig. 2. Shadow Dexterous Hand (left) that has been covered with a tactile skin [51] (middle) in order to provide tactile information at several locations (highlighted green regions on the right rendering).



• Perception - Visual





• Perception

| Contact-Level                                                                                                            | Object-Level                                                       | Action-Level                                           |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|
| <ul> <li>Force/Torque<br/>Sensors</li> <li>Visuo-tactile<br/>sensors</li> <li>Distributed<br/>Tactile sensors</li> </ul> | <ul><li>Localization</li><li>Shape</li><li>Mass/dynamics</li></ul> | <ul> <li>Motion<br/>capture</li> <li>Vision</li> </ul> |

• Perception



• Modeling and Control with Contact







Nothing

Spectrum of Assumptions made about the World in Whole-Body Manipulation (2022)

Everything

- Planning
  - Reinforcement Learning
  - Graph Search
  - Offline Trajectory Generation



• Problem Statement

#### • Background

- Whole Body Manipulation
- Object Learning
- Research Objectives
- Proposed Research
- Anticipated Contributions

## **Object Learning**

- Localization
- Shape Estimation
- Physical Parameters Estimation





Fig. 1: **SwingBot.** We develop a learning-based in-hand physical feature exploration method with a GelSight tactile sensor, which assists the robot to perform accurate dynamic swing-up manipulation.

• Problem Statement

#### • Background

- Whole Body Manipulation
- Object Learning
- Manipulation with Large Scale Soft Robots
- Research Objectives
- Proposed Research
- Anticipated Contributions

## Manipulation with Large Scale Soft Robots

- Challenges in scaling up soft robots
- Models and controllers are lacking



# **Background Summary**

• Problem Statement

#### • Background

- Whole Body Manipulation
- Object Learning
- Manipulation with Large Scale Soft Robots
- Research Objectives
- Proposed Research
- Anticipated Contributions

- Problem Statement
- Background
- Research Objectives
- Proposed Research
- Anticipated Contributions

## Hardware Platform

- Explore/exploit passive mechanical compliance for whole-body manipulation
- Existing sensory feedback
  - Pressure
  - RGBD
  - Tactile
  - Orientation



## **Research Objectives**

- 1. Develop dynamic models and evaluate a simulation framework of the proposed soft robot torso.
- 2. Explore the combined use of visual and tactile sensory feedback to learn geometric and inertial properties of large unknown objects.
- 3. Develop and evaluate algorithms that utilize learned knowledge about a large object in order to manipulate it into a desired configuration.

- Problem Statement
- Background
- Research Objectives
- Proposed Research
- Anticipated Contributions

- Problem Statement
- Background
- Research Objectives
- Proposed Research
  - Dynamic Modeling and Simulation of Soft Robots
- Anticipated Contributions

## **Dynamic Modeling and Simulation of Soft Robots**

- Finalize adaptation of well-supported rigid body simulator
- Represent continuum joints with discrete disks in MuJoCo.
- Compatible models
- Almost complete



- Problem Statement
- Background
- Research Objectives
- Proposed Research
  - Dynamic Modeling and Simulation of Soft Robots
  - Learning about Unknown Objects
- Anticipated Contributions

## Learning about Unknown Objects

- Must the object be entirely known before manipulating it?
- Use ideas from Simultaneous Localization and Mapping (SLAM) for mobile robots.



## Learning about Unknown Objects

- Visual Feedback
  - Shape Completion' via
     Convolutional Neural Networks
  - Provides a prior for tactile estimation





Input (Novel Class)

Our Reconstruction

Input (Novel Class)

**Our Reconstruction** 

### Learning about Unknown Objects

- Tactile Feedback
  - Exploratory motions to refine vision prior





- Problem Statement
- Background
- Research Objectives
- Proposed Research
  - Dynamic Modeling and Simulation of Soft Robots
  - Learning about Unknown Objects
  - Control and Planning for Whole-Arm Manipulation
- Anticipated Contributions

## Control and Planning for Whole-Arm Manipulation

- Two main control challenges:
  - Soft robot and object dynamics are uncertain
  - Hybrid system with unknown contact sequences
- Proposed Solution
  - Adaptive Control + Contact-Implicit Optimization

#### Manipulation with Large Scale Soft Robots

Model Reference
 Predictive Adaptive Control
 (MRPAC) = MPC + MRAC

$$egin{aligned} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{w} + au_{ ext{disturbance}} \ au_{ ext{disturbance}} &= -Y(q, \dot{q}, \dot{q}_{ ext{ref}}, \ddot{q}_{ ext{ref}}) \hat{a} \end{aligned}$$



## **Offline Neural Network Compensation**

 Neural Networks can compensate for dynamic modeling errors.



C. C. Johnson, T. Quackenbush, T. Sorensen, D. Wingate, and M. D. Killpack, "Using First Principles for Deep Learning and Model-Based Control of Soft Robots," Front. Robot. Al, vol. 8, 2021, doi: 10/gkc4db.

## **Offline Neural Network Compensation**

- A more accurate model helps significantly with model-based control.
- Some learning/adaptive mechanism seems promising.



C. C. Johnson, T. Quackenbush, T. Sorensen, D. Wingate, and M. D. Killpack, "Using First Principles for Deep Learning and Model-Based Control of Soft Robots," Front. Robot. Al, vol. 8, 2021, doi: 10/gkc4db.

## **Contact-Implicit Trajectory Optimization**

- Two general methods for dealing with hybrid systems
  - Multi-Phase methods (requires sequence of contact phases before hand)
  - Contact-Implicit (or Invariant) methods:

find 
$$\ddot{q}, \lambda$$
  
subject to  $H(q)\ddot{q} + C(q, \dot{q}) + G(q) = B(q)u + J(q)^{\mathrm{T}}\lambda$   
 $\phi(q) \ge 0$  Non-penetration constraint  
 $\lambda \ge 0$  Normal forces  
 $\phi(q)^{\mathrm{T}}\lambda = 0$ . Complementarity constraint  
 $\lim_{\{h, x_0, \dots, x_N, u_1, \dots, u_N, \lambda_1, \dots, \lambda_N\}} g_f(x_N) + h \sum_{k=1}^{N-1} g(x_{k-1}, u_k)$ 

 $\Phi(q)$ 

λ

## **Contact-Implicit Trajectory Optimization**

- Has been used to optimize contact-rich trajectories.
  - Example of biped standing



### Adaptive Control + Contact-Implicit Optimization



- Problem Statement
- Background
- Research Objectives
- Proposed Research
- Anticipated Contributions

#### **Anticipated Contributions**



TODAY

## Summary of Research Questions Addressed

- 1. How to model and simulate a large-scale soft robot for contact-rich manipulation.
- 2. How to use visual and tactile feedback to learn about an object.
- 3. How to manipulate an unknown object.

# Summary

- This research will enable robots to
  - Be more capable, especially in open-world manipulation
  - Be less expensive
  - Have larger workspace



